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The exceptional utility and performance of the sequential, linear,
unbiased, minimum variance estimator suffers severely in the presence of
dynamic model errors. This_prob]em -- perhaps the gfeatest detriment to the
so-called Kalman filter algorithm -- 15 discussed in light of its divérgent
effect upon the estimation process. |

A number of optimal and suboptimal modifying techniques are described
which attempt to prevent this divergence. Extensions are déVeloped resulting
in adaptive forms and a new algorithm is derived for sequentially estimating
the state noise covariance matrix. Performance of the techniques is
illustrated by their application to, (1) the terminal phase of an Earth
orbit rendezvous mission, and (2) the he]iocentric trajectory determination
of a solar electric propulsion space vehicle.. Numerical results indicate
that the model error difficulties can be sufficiently countered, with
particularly effective performance being supplemented by the sequential

state noise covariance estimator.
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Chapter 1

INTRODUCTION

1.1 Background and Scope

The first solution to the problem of optimally estimating the values
of a set of quantities from a large sef'of dafa is generally attributed‘to
Karl F. Gauss' méthod of Teast squares (1).* A]though A. M, Legendre offered
an early published version (2) in 1806, Gauss providéd the basic mathematical
derivation. Interestingly, the method was developed and applied to classical
problems of orbit determination. Nearly 170 years later, it is now used as a
fundamental technique in sbace vehicle tracking and modern orbit determination.
In fact, the wide applicability and use of Teast squares'in all fields of
engineering is testimony to the genius and insight of Gauss.

Although intermittent developments of some importance occurred,
particularly the ideas of probabilistic approaches, it.was not until after
the first decade of the twentieth century that the foundations of estimation
theory were extended at a ieve] of significance parallel to Gauss'. R. A.
Fisher {3) introduced many of the terms used to characterize the performance
of estimators; his concepts and efforts provided fertile ground for further
developments and new approaches to estimation theory. In 1942, Norbert
Wiener, considered today as one of the world's leading mathematical analysts,

produced the so-called Wiener-Hopf integral equation. The solution to this

* Parenthesized numbers indicate references as enumerated in the
Reference section. When specific pages are referenced, they are separated
from the reference number by a comma. Thus (5, 10-12) indicates reference
5, pages 10 through 12.
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equation-is a weigﬁting function which, when combined with a Tinear measure-
ment, results in an estimate of the deéiked quantify which minimizes the
error in a mean-square sense (more exactly the Nfener-Hopf integral offers
a method for producing Tinear, minimum varianée unbiased estimates).

Although Wiener's work is truly significant, the integral equation
. 1s limited in its practical application. _wifh the arowth of statistical
communication theory, Wiener's technique received wide attention. Several
attempts were made to improve and generalize the theory; however, ﬁone of
these increased its basic utility and applicability.

The development of the digital computer provided a practical alterna-
tive approach to extending the applicability of estimation theory. Rather
than attempt analytic extensions and solutions to the Wiener-Hopf inteqgral
equation, R. E. Kalman and R. S. Bucy (4) derived a differential equation
from the Wiener-Hopf integral. The computational efficiency of the digital
computer made the numericail solution of the differential equation practical
and resu1te& in a widely applicable algorithm for providing 1inear, unbiased,
minimum-variance estimates. Today, particularly in navigation and guidance
applications, "Kalman Filtering" as it has come to be called, ranks next to
Teast squares in popularity.

In spite‘of the utility of the Kalman filtering algorithm, the tech-
nigue suffers from a particularly severe problem known as divergence of the
estimate. It usually arises from the fact that for the state vector to be
estimated, the system dynamic model is incorrect. Operation of the Kalman
filtering algorithm in the presence of modeling errors produces estimates
which are essentially worthless: the estimated state is grossly in error.

Divergence of the estimate, perhaps the greatest detriment to the

Kalman filtering algorithm, has received considerable attention. As a résuit,
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various techniques have been devised to compensate for modeling error. Such
techniﬁues may be thought of as fa]Ting loosely into two major categories:
adaptive and non-adaptive methods. Non-adaptive methods generally attempt
to improve the estimation process by altering the filter structure in an a
priord and thus suboptimal manner-. They also inclide a priord approximations
to the actual modeling errors. Adaptive methods attempt tqlfmprove knowiedge
of the dynamic model or to improve operation of the fi]ter duting the estimation
process, | _ |

The basic objective oF this study is to investigate the utility of a
variety of model error compensation techniques, both adaptive and non-adaptive,
and to compare the effectiveness of these methods. 1In the remainder of Chapter
1, the Kalman filter is introduced and its properties discussed. The model
error problem is illustrated by a simple example. A brief literature survey
of model error compensation techniques is also presented. In Chapter 2,
selected non-adaptive error compensation methods are presented and compared
analytically. In Chapter 3, various new and previously developed adaptive
methods are discussed. Chapters 4 and 5 illustrate the application of the

various techniques to selected problems, and Chapter 6 concludes the study.

1.2 The Kalman Estimator and Some of Its Prbgerties

Many expositions of the_Ka]man filtering algorithm exist in the
]itérature, offering a number of unique, yet unifying approaches to the
theory (5, 195-209). Thus our purpose here is not to give a rigorous
derivation of the Kalman estimator. However, as a point of departure and
for the sake of consistency, a somewhat heuristic development will be
presented. Following this, some of the notable characteristics of the

algorithm will be discussed.
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Before proceeding, an important preliminary must be_treated. For a
given dynamic system, the problem is geﬁera]]y one of observing or measuring,
in a stochastic environment, some aspect of operation of the system, and
then treating the meaﬁurement output in a judicious manner in order to extract
specific knowledge of the system's performance. However, an important
distinction must be made concerning the measurement process. On the one
hand is the case where.the meééurement prbcess is carried out continuousiy
in time; this is often found in analog computing applications. On the other
hand is the case where measurements are made at discrete points in time in
correspondence with digital computing applications. While formulations of
the linear, unbiased, minimum variance estimator are known for both cases,
widespread application of'the digital computer focuses attention upon the
discrete formulation. In the subsequent developments we will be concerned
with this.approach only.

Within this scope the problem may be stated as follows: (1) Given

a dynamical system modeled by the Tinear difference equation

B =y Ty T g Vg (1.2.1)
where
, =-x(;k) is an m-vector of random state variables, and x = é(to)
is given;
_ . . e o
@k’k_l @(tk, tk_l) is the nxn state transition matrix*, with ®j’. =1

* The properties of the state transition matrix are well known. Some
of these are mentioned later.



W, = w(tk) is an m-vector of random input disturbances with the

k
statistics
T T )
o) =0 sl ot =9 8 B fe Wt -
(ﬁkj is the Kronecker delta; ¢ )T denotes transpose);
Fk,kfl = T(ts t,_;) Is the mam disturbance transition matrix: and

(2) Given the linear observation-state relationship

5]
~—

= ; ' .2,
Hk sck + vk . . ‘ (1

Y = Y(t,) is a p-vector of observations;

H = H(t) is a pxn mapping matrix;
v, = v(t,J) is a random p-vector of observation noise with statistics
T Ty
Edv ) =0, 2o, vib =B & Elm, o} =0,

T ‘ .
Efv, W } =0, for all x and ; *;

~

(3) Find an unbiased estimate, > based on the set, V,, of x observation

vectors through time tk,

Vk =z {yl, Yo vees yk},

i.e., find &

o SE{me Yot with B{& | ==

kJ
(4) Such that ﬁk is formed as a linear combination of the k observation vectors:

+ Kk Yoo ' (1.2.8)

* If Qk and Rk are constant for all k, the corresponding noise processes

are wide—-sense stationary.



and such that the state error covariance

. . o T _
P, =P(t,|Y,) =E {(e - 8 )(e, -~ 2)7} (1.2.4)

at time, tk, based on Vk, is minimized. Note in (1.2.3} that ﬁk_l is the
estimate of 2, based on Vk_l, and in this sense ﬁk is based on a11-of the
elements of Vk.‘ In other words, given (1.2.1) and (1.2,2), the problem is

to find Lk and £, such that (7.2.3) is én unbiased, minimum variance estimate

of &, .

In order to aid'the‘discussion, sbme notational simplifications are
made. In general, the notation |
fklk = f(tklvk)‘
means the function, f, evaluated at tk, based on the knowledge of Vk. For

brevity we will simply equivalence this with the notation, L When no

confusion exists, the subscript x will be eliminated altogéther. Hence,

L
P L1 = Tt B )

=z = x(tk)

=8 =8 =80V

w=7, = T = ® Bl

r = Ek = ﬁk[k =z - %

%‘z.%kzﬁklkd:x-rr_

Q=9 =alt)

R =R = R(t)

P=P = Pk[k = Pt |V,) 7

P=F, = Ptz = PN = o+ rg, " (1.5.5)



L = Lkzb(tk)
K =Kk -—-K(tk)

Proceeding, the requirement which must be satisfied if & is unbiased can be
obtained by using (2.2.1), (1.2.2), and (1.2.3) to form the state estimate

error, &, and then taking the expected value. Thus,

T S B =0+ o - LB - Koy
=t +tTw, -0 8 - K (H e . +H Tw, _, +v,)

E{%k} =x - FE{z}=0

= Qo - L BE Y- K B o

[(7T-KH) d-L]lzx, =0 (1.2.8)

k-1
where use is made of the facts that Elw,_,} =0 and E{uk} = 0. Satisfaction
of equation (7.2.6) leads to the requirement that

L= (I -KH) ¢ _ ' | (1.2.7)

and thus (7.2.3) becomes

B o=(l-Ki) @ & _,* Ky,

=08 _,+Kly -HO

- y | (1.2.8)

k-1
By using (1.2.1), (1.2.2), and (1.2.8) the state error and the state estimate

error covariance matrix can be obtained as follows:

8¢
]

L=

$32
+

|
A
1

K¢z ,+HTw + v )

k k-1 k-1 1 k-1
= (I -KE)(3%_, +Tw _ -Kuv, | (1.2.2)
o T N
P, = E{xk £} =F{(I - KiI)(® Bt Tw,_ )
e S e . . ~ T LT
(,_; & +w [ TNT - H K} - (I - K g+ Tw v K -

T 7 T T 7T ] T T
K’vk(xk_l o+ wo_g ") -~ 0 K°) + Kk CA K1



i : - Ty T,
Combining terms, and recalling that E{xk_l vk} =0, E{mk_l wk} = 0,

T.. T
Elo, v} = 0 and £l v, .} =0, (see page 4) one obtains
_ . T 7 T T T
Pe=(I-KH) (0P, & +TQ  T)(r-" &) +KFRK (1.2.10)
In view of the definition of P in equation (7.2.5),
P=(I-Ki)P (I~u K +KRK | (1.2.11)

The first variation is now taken with respect to .
8P = (I -~ %H) P (-5 6K") + K R 6k + (I - 6kH) B (I - 4% &%) + 6k & T
(1.2.12)}
Necessary and sufficient conditions that ? be a minimum are that (1) ép =0
and (2) that the second variation of P be positive definite. Solving (1.2.12)
for X with &P = ¢ leads to

Tep (1.2.13)

XK=P A (H T o
Far an arbitrary n-vector, s, the corresponding quadratic form for the second
variation of P is required to be

T o2 _ T =5 o T
57 8P s =8 S8K(HPH +R) SK 5 >0 (1.2.14)

Thus if P is positive definite, then the bracketed term in (1.8.14) must be
positive definite, and fulfillment of (1.2.74) guarantees the existence of
the inverse in (1.2.13). | |

With k¥ given by (1.2.13) the updatéd state estimate error covariance
may be obtained by substituting for x in equation (1.2.171).

(I - KH) P (7 -8B k%) 2+ x p %7

P::
=P-kKkBEP-Pu kT + xtu28” + ) %7
=FP-KAP-F8 K +PH " P + 0 v e v p) &F

or
P= (I -KH) P (1.2.15)



which is the required covariance update equation.

The system dynamics are given exactly by equation (7.2.7). The
random input, @, is unknown; howeyer, being probabilistic in nature, the
expected value of the equation may be taken éonditioned upon'the observations

up through time, - Thus

E{xklvkml} = O ki E{xk_llyk_l} # T et E{wk_llykwl} s
with
E{wk!vk-} =B, } = 0
or
x, = 2t |V, ) = ks Ber T Yk (1.2.16)

Equation (7.2.16) provides the estimate of x at time b based upon observations
through time tk_l. It is also an unbiased, minimum variance estimate (5, 201).

and

e _ T T -
B =Pl |V, ) =0P & +Tg r | (1.2.17)

is the predicted value of the error covariance at by given observations
through time teey (5, 207). Equation (1.2.17) follows directly by forming
the state estimate error covariance using equations (1.2.1) and (1.2.78).
Equations (1.2.16), (1.2.17), (1.2.13), (1.2.8) and (1.2.15) are the
equations of the classical linear, unbiased, minimum variance estimate. The
algorithm, denoted as Algorithm I, is summarized below.
Given: the a paioni information %0 R Po’ Yo and £ = 1. Compute:

1, 2z =03 . B ==z - o
X 1 4 Z xk+Kk(yk Hkxk)
2. P =0opP .o +r0 T 5. P =(I-XK H)T
k k-1 k-1 Yk k “x “k
= = .7 -1
3. Kk—Pka(HkPka+Rk) 6. k =k + 1, repeat



Glven:

Figure 1.1 Kalman Filter, Algorithm I

10



11
The Kalman estimator above is based on linear system dynémics. It
" has been applied Successfu11y to many nonlinear problems in the following
manner. o
Consider the n-element state vector, x(t), whose values at discrete
times are given by the nonlinear differenﬁe equation,

) = FIX(6, ), t,0 + T wlt, ), (1.2.18)

where » is a random input with properties as specified by (1.2.1), and T is
the. corresponding disturbance transition matrix. Define a reference state,

X . .
xAe) 1€ FLX(E, ), t.) s continuous fore >t . >¢

> k_l,'then a linear

approximation to 7 may be obtained by expanding in a Taylor series about

A*(t,_,) to obtain

: 5F_ *
~ # e - A
P(X, 3» t) = F(X,_ A% ) + . (Xeeq = X g™
_ 3F, * o _
B % - #
Yt 7 Prerm Heeas (1.2.19)

where the subscripts denote values at the corresponding times.  Substituting

into (1.2.18) we have, to first order in X,
_ | -3

aFk*
X =X *4+ - *
ke T, ez = Kped™ + T ez i
Defining &, = ¥, - X * and = * . < )
9, F jiand e . = oF */8x, ., then obtain (1.2.1).
T T ¢k,k-1 Tzt Pk,k_l Yoy | (1.2.1)

A similar linearization is performed if the observation-state relation
is also nonlinear, bqt with additive noise, u(tk).-

Y(?’:k) = G[X(tk), tk] + v(tk) (1.2.20)

T Note that this is the definition of ¢ for the linear case as well.
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where X(tk) 15 a p-vector of observations. Defining a nominal or reference
observation,

£ — * o -
Y E= e bl F e, (1.2.21)

where the subscripts again denote values at the corresponding time, and
expanding in a Taylor series we have

g #

: , .
=¥ * - X # - 2.82
Yk Tt T, (Xk X P Voo o (1. )
or to first order fn.Xk,
Y, = Hk Tt v, : | (1.8,23)
where -
- - #
Y = T = ™
= £
Hk aGk /axk

Thus the optimal 1ihear estimator previously presented may be applied to the
cases of nonlinear dynamics and observation processes. However, accurate
estimates of the deviation, fk’ from the refefence or nominal solution reguire
that the Tinearity assumption be valid. It is possible that Targe deviations
can violate the Tinearity assumptibn resulting 1nrdivergence of the estimate.
One method of reducing this possibility is to émp]qy the so-called extended
Kalman filter in which a new reference is chosen at each observation. In
particq1ar, after each observation is processed, the reference solution is

updated by setting the nominal equal to the new estimate:

% - * ’ 2 )
Xt = Xk = F(Xk_l R tk) + & (1.2.24)
i *, 21 ro s £ =z =0. T
After forming Xk s By is set to ze 0 that g,.=%, 0 hen the next

updated estimate, at trng® 18 found as

Bper = Kier1 Yie1

or, in terms of x,



~ . * ,
' = (X : 285
Ypog = 0K L) + Ky iy (i.2.85)

The notation X; is no Tonger necessary since it is identical to ik, The
extended Kalman algorithm, Algorifhm I1, is summafized in Figure 1.2 for the
nonlinear probiem; |

| Usually the difference equation (z.2.1) is obtained from the solution
to the Tinear vector differential equation

F(t) = A(t) x(t) + B(t) u_(t). | NS
where u(t) is some inputf For the nonlinear problem, A{t) = af(X*, t)/aXf(tJ,
where X’E satisfies the nonlinear differential equation, iﬁ(t) = f(X*,t).

The solution to (7.2.27) is well known (39, 41-43) (15, 31-43) in the form
t, & ‘
wlt ) = ot , t ) ot ) +jt' oft,, ¥ Blv ulr) d 1 | (1.2.28)
k-1 '

The state transition matrix, @, satisfies the hohogeneous differential equation

Bb, t ) = A(t) a(t, t), oft , t) =1 , (1.9.29)
7 7 v i - _

B also has the following properties:
¢(ti, tk) = @(ti, tj) @(tj, tk)

oLt ., t) = alt, t)
i 3 i 1

When w(t) is replaced by white noise, with Eu(t) wF(¢)} =
uet) §(t-v) ¥, difficulties occur in attempting to evaluate the resulting
stochastic integral in (1.2.28). The prob]em arises from the fact thﬁt the
elements of white noise are uncorrelated in time, and hence are nowhere
continuous. A common approach to remedy this (44, 326-327) (39, 115—11?)

is to select At = tk - tk ; small compared to the system characteristic

+6(1; - 1) is the Dirac delta.



Given:

tk
X = -£ FlX, t) dt
k-1

!

+
k o .
P, :{ [ACE)B(E) + PLE)AT(¢)
k

-1 + B(£)@(t)BT ()] dt
K=k + 1 e =Y, - CIE, t]
Fay

Figure 1.2 Extended Kalman Filter: Algorithm 11
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response time, and approximate w(t) as a constant w(tk—1) over Af.*

In this case we define

&
. k .
Tlt,, t, ) z_g; 3¢, T B(T) dr | (1.2.30)
' k-1

This is the approach taken to obtain equation (1.2.i); An alternative method
is to define, formally,
dw’= u(t) dt

and employ the definition of the It6 stochastic integra1.(5,-98) to obtain
Ly

j; Wbo™ BV dw =&\ B (ol -wg ) (1.2.31)
k-1 :

In thi i _ :
this case one cannot write the form Fk’k_l W g

Stratonovich stochastic integral, yields the same result for this case

‘Another alternative, the

(5, 116-120). The most general consideration is simply to define

+
k . .
'w(tk-l) Ejt" @(tk, T) B(1) wit) d1 (1.2.38)
k-1
In this case, Fk i1 = I. The differences in these definitions are mani-

fested in the estimation process through the corresponding covariance terms.
Thus for (71.2,30) one finds

T Efw wT} 1T =

tk T tk T T
J ot v oB(w ar Bl w Y BT(w 6T, v dr (1.2.33)
Y1 S '

For the It6 integral,
T®T

T, T
FEww 177 = ¢ k "k, k-1

E .‘_'V - ‘__ rd
B {ﬁak wk_l)(wk wk_l)} B

k k-1

Carrying out the multiplication, this becomes

~* A white Gaussian process may be shown to be the limit of a white
Gaussian sequence, e.g., (5, 83-85).
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T, T . T - T T T
= : N
PTE{w w } T & B E{wk we F W wk_l} B ¢ (1 : 34)

since Blw? wl)} = @7 §..
77 i ij
Finally, for (1.25.32)

rEw 07} T7 = Bw w7} =

tk ' T T T
j‘f $(t,, T) B(T) E{u(t) w (0] } B (p) & (t,, p) drdp

tk—l‘

But Eluft) ul(p))} = Ut &(t - p), and since (44, 332)

t
x 1, ¢, <1<t
[ str-p dp={ k-1 k
Ck-1 Os Ty 777 %
then
+ .
T K T
Pl w7} = f o(¢,, v B(V Ut BN et , U dr (1.2.35)
£
k=1

Noting ¢ = Efu, w?} = E{w v}, one finds for (1.2.33), (1.2.34), and (1.£.25),

respectively,
rogrf=rur? : (1.2.33q)
rort =280 BT ¢ (1.9.34a)
T tk T .T
reri=q¢=f eBuB’ e ar _ (1.%.35q)
by

Thus, depending upon how one def<nes the stochastic integral in (I1.2.28)
various forms may be obtained for I' ¢ rt.

With the extended Kalman form, the state transition matrix is used
only in the prediction of the state error covariance matrix. It is possible .
to eliminate the state transition matrix altogether by use of a differential

equation for the error covariance, obtained by a straightforward limiting
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process. First we write (1.2.17) such that the forcing term Tor” is in the

form (1.2.35). Letting © = ¢,,

t = tk_l,-and defining At = T - ¢, we have

T
P(1) = &(t, t) P(t) & (1, t) +f o1, s) Ble) Ule) BTre) o7(1, &) de
) t

(i.2,38)
Using the Tay1qr series expansion, ' ‘
B(T) = [B(,8) + S(t,2) Ot + ... ] PCE)[8(t,2) + S(t,¢) At + on]”
T=t
[f &(t,8) B(s) Uls) B (a) & (1,8) ds +
t
=t
-g? I otr,8) Bls) vce) B%e) & (1,8) ds At + J (1.2.37)
t

where 5(t,t) = d%(t,t)/dr evaluated at v = £. The first integral in r71.2.37)

is zero. Applying Leibnitz' rule to the second integral we have

T=t
—g-? f b(t,a8) Bfs) Uls) BT (s) @T(’c,s} ds At =
" :

T=t
Bt} u(t) B(e) bt + J 2 (0(v,8) Bls) e) 870s) §F(n,6)] de At
t

(1.2.38)
Noting that the integral here is also zero, and that &(¢,¢) = A(t), one

finds on substituting into (1.2.37) that

P(1) = P(t) + A(t) P(t) At + P(t) AT(t) Mt + B(E) U(t) B (t) At + ...

Now, by definition P(t, ) = P(t, |V, _.), and P(t.) = P(tklvk_l). Since no

new information is being added, then at ¢ = ¢ we may make the substitution

k-1
P(t) for P(t). Then substracting P(#) from both sides, dividing by A+ and

taking the limit as At + 0, one obtains the differential equation

Bre) = A(t) B(t) + B(t) A (t) + B(t) Q(t) B (L) (1.2, 30!
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Since P is a symmetric nxn matrix, only n(n+1)/% equations need to be
integrated. ¢ is nxn and, in general, not symmetric, 50 & feduction in
numerical effort is obtained by integratfng the appropriate nin+1)/2
equations for éﬁ On the other hand, dependfng upon the specif{c problem at
“hand, it ﬁs often’poésib]e to reduce the number of equations in & = 4¢ by

obtaining c]osed_form solutions for some'of the elements. Also, it has been

found that (7.2.39) can be a difficult equation to integrate numerically. .

1.3 Properties of the State Error Covariance

This section deals with some characteristics . of tﬁe state error
lcovariance matrix. We will not elaborate at length -~ a number . of investi-
gators have done extensive work in this area, notably Kalman. However, some
of the key properties are.presented.

We first show that any covariance matrix is non-negative definite.
For a vector random variable, =z, with mean,.ﬁ, and covariance, Z, considef
the quadratic form |

q = a'za - | o (1.3.1)
where a is an arbitrary vector of constants. Since the expected value is a -
Tinear operator, |

g = "B (z-1) (2-wT) @ = Ela" (z-w) (5-w) T} (1.3.2)

Defining the sca1ar

g = aT(z—u)
we have
qg = E{s ST} = E{Bz} | (1.3.3)

which is never negative. Thus Z is non-negative definite.
Next, positive definite bounds may be established for the error

covariance associated with the Kalman filter. In particular, Sorenson (7)
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takes a rather unique approach by decomposing the system, equatibns (1.2.1)
and (1.2.2) into two separate parts. One, denoted as p, has input noise,
‘but perfect measurements; the other, denoted‘as m, has no input noise, and‘

imperfect measurements. Thus,

m
e T %7 =,
om o B | | 3 .
Yp = Y T Y (1.3.4,

_where the systems m and p are

& = e

Come p k-1
m_ . m ' ) .
yp—Hmk+vk | (1.3.5) .
zy = )+ o, q

S BV I He? ' : . (1.3.6)
Yk X -

Sorensen then discusses the covariance properties for these two systems
separately. For the noise-free plant, m, the observability matrix, defined

as
k

T T -1
M e H . L3, 7)
ki =20 Y M By H 0 (1,3

i=7
is used to establish the positive definite property of the state error
covariance matrix. Specifically, a matrix inversion lemma, the so-called
Schur identity given in Appendix A allows (1.2.15) to be written as

mo_ .o = @ 5 -1m T -1 -1
Pk = [I Kk Hk] Pk = [Pk + Hk Rk Hk] (1.3.8)

where now ?;’: @Eﬁﬂl %, since m is the noise free plant. Then,

~Im -1 —1m -7 T -1 ) . . .
Pk = cpk,k—l 1 cbk,k-l + Hk Rk Hk . (1.3.3)
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The system is safd to be observable on the interval [tj, tk]'if the
observatility matrix M, 50 is posftfve definite. 1If this condition holds,

“and P? is also positive definite, then (1.3.9) can be written as

L]
-
[y
&
[
Lo}
=

- - RS
' ®k,0 [Po * Mk,lj ®

where use is made of the fact that

= —lm.ﬁ . T =1
Pk h [¢k,k~1 p?*l ¢k,k—1]
R -Im _-T
- Qk,k—l Pk—l ¢k,k—l
= & 'P-—lm @T

k,k-1 k-1 "k,k-1

By arguments similar to the previous discussion, Pﬁ is therefore positive

definite for all k, since thé bracketed term in (1.3.10) is also. Additionally,
Sorenson shows that ¥ may be described in a recursive fashion by

_ 7 7 -1 ‘
M i = Meea 3t O e B B B b oy o (s

and since the second term on the right is non-negative definite,
M3 ™ Mk-1,7
is positive definite for all x > j.

is also, thus allowing the conclusion, by (1.3410), that ?2

Building on these facts, Sorenson also states the well known
characteristic that Pﬁ generally tends to vanish for well-defined systems
with no input noise. First, the concépt of g-stage observability is defined.

Given 7 < g < W such that ¢, < gt and £, < t,» the system m is said to

be ¢g-stage observable on an interval [to, tN] if and only if Mk,k—q+l 15

- 4 = = . t ] » - ’ _ : » -
positive definite for every tk That this implies Mk,l Mk—q,l is positive

definite may be readily seen by modifying (7.3.127) to obtain

Vi
M1~ 7.5.10
k,1 Mk'qll * (Dk"'QfO Mk,k-q+l q)k—g,o : (1.8 )
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This follows by substituting #, using (2.3.7). Under g-stage

HR—g+1
observability, (1.3.12) suggests that in some sense Mk‘j increases without

4

bound. ,Consfder the spectral norm of & and &~ %:
_ 1k ~1 _ ok '
‘le,lL, B Amax’ liMk,lil - I/Amin (1.8, 13)
where AX  and 3 are the maximum and minimum eigenvalues of » . Now
max o omin k,1
if Mg is g-stage observable,
T G D LS - O
max max min min
with similar inequalities for the other eigenvalues. Then
Lim _Lim ko _
fercn II Mk,lll " koo Amax oo
and .
Lim -1 Lim 1 '
PN M I il vl (1.3.14)
min
Using this result together with (z.3.70), Sorenson realizes the
following conclusion: For a g-stage observable system, if ||M;ll§[_converges

to zero more rapidly than |]¢ increases, then the error covariance Pi

k’ol |2
vanishes as k +~ «. To verify this we merely need to show that the norm of

the elements of (7.3.170) vanish. First, for no a priorni information,

Palm = 0. Thus*,

-1 T -Im -1 .7
> 3. 158
leo ak,l leo ®k,0 FPO + M%,I] i (71.3.15)
and

M-l ®T M—l ||

PR < Loy, .7 o o1 < e, o112 11, (1.5.16)

which vanish as k » « if the original hypotheses are met. Further, as % - <,

(1.3.15) tends to equality with increasing accuracy. The implication is that

*# A > B > (" means that 4 - B 1is non-negative defipite and B - is
positive definite.



for large %, Pz is essentia11y.independent of Pg for g-stage observable
systems.

For systgm p, where the measurements are perfect, one is able to
conclude that the error covariance matrix is never positive.definite. Using

(1.2.15) and (1.2.13),

_ 5P
HkP}Ez P S

-8 _PSJ‘E'HT[H Py uy B2

= l_ (1.5.17;
Thus if Pﬁ were positive definite, Hklwou1d_have to assume the contradictofy
state of having to be identically zero. Utilizing the gains,_Kf and Kﬁ
which are optimal for each system, Sorenson then shows that a lower bound

on the total error covariance is given by

m 14
>
Pk —-Pk + Pk

or

P eu 1771s + PP ' (1.3.18)

>
Pr2® it k,1

k k.0
Utilizing the gain Ki, which is suboptimal for the total system but may be
optimal for either (but not both) of the systems m and p» an upper bound is

established as

=
P SFC + PY

k

where P™ and PP° are the corresponding covariances. If Ki is chosen to be

Kﬁ (the optimal gain for system m), and used for both systems, then

' ~1m =1 5
P <0 + M 5+ P | (1.3.19)

x = %, 0l%0 k11 %,
But Pﬁm will generally increase without bound since ngise is continuél]y

being input to the system, and therefore, as Sorenson points out, (7.5.79)



23
1s an unsatisfactory bound. Note that in this case (7.3.17) generally will
not hold, since the gain is not the optimal for system p. If in fact,

?QkFT is positive definite, then

Py = (1 - PUET PMET + 07T m) B BT
_ m T T
=(I-K"@lep, & +Tg_I']
(7~ Fm ., 5P 7
= (7T KmH)[Pk+AP + 70T
>Tq "+ PP >rq 17 (1.3.20)

This last is true since Pi and hence ¥ eventually vanish. Thus (1.3.18)
and (1.3.19) represent positive definite bounds upon the total system error
covariance, P,.

An alternate definition of observability requires that the information

matrix, T, 5 be positive definite:

k
_ T T -1 .
= >
T s i§=3:' O R Hy By H 0 >0, k> (1.3.21)

If this condition holds, the system (1.2.7, 1.2.2) is said to be completely

observable with respect to {yj, y ces yk}. Note that T, . is related

7

Jj+1’
to the observability matrix by

T
= . 1.3.852
Meri = %,5-1 Tie,5 Y, i-1 0 (1.3

and related to the error covariance by

~Im _ T —-1Im oz
Pk = @0,]{ PO Qo,k + Tk,i {1.3.23

This latter follows from (7.3.10). A recursion for T may also be obtained

using (7.3.171) and (1.3.82):



2

LT T T —~1
T . =49, Mo, 0, =4 . D, A
K,7 ®J—l,k k.3 ®]~1 ¢3—1,k Mk-l,j ¢3~1,k * Hk Rk lrk

T T T ~1

= Vi Ye1,-1 Mre1,5 Vo1 -1 C-10 t HK By By
or
T = oL R e, kg (1.3.24)

k.5 = %tk Tke1,5 Yeez,x t R Fr Hpo
A concept dual to that of observability is controllability. The
controllability matrix is defined as

% T T
A [

k,0 ;Z% ¢k,i Ti,iwl @i-1 Fi,i-l ®k,i

(1.3.85)

The corresponding dynamic system is said to be completely controllable if,
and only if, Ak’0 >0 for k& > 0.

Jazwinski (5, 234-243), drawing upon the work of Kalman, Sorenson,
and others, gives a comprehensive discussion of bounds and stability of
the filter equations. Extending the‘concepts of 0bservabf1ity and control-
Tability, Jazwinski defines the system (1.2.1, 1.2.2) as being uniformly
completely observable if there exist a positive integer, ¥, and positive
constants, o and B, such that

<
0 <al < Tk,k*N < BI

for all k > y. Similarly the system is uniformly completely controllable if

0 < vyl f-ﬁk,k-N < 67

where v and ¢ are positive constants. Using these definitions, Jazwinski's
results are summarized in the following:

Lemma. If the dynamical system (21.2.1, 1.2.2) is uniformiy com-
pletely observable and uniformly completely controllable, and if Po-i 7,

then
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a) P_ is uniformly bounded from above,

k
b) P, 1s uniformly bounded from below, .

¢) Pk >0,

for all & > ¥. Further, the filter of Algorithm 1 is asymptotically stable;
that is, S

.lléftk, to)![‘f_81 exp[-cz(tk - to)]

for all ¢ > £, (e1 and ¢, are constants).

In (5, 244-251) Jazwinski also discusses error sensitivity. In this
latter regard. he proved the fo]]ﬁwing:

Theorem. If Py < 20, @ <@, » and R < R for all k, then

P, <P and B <P ° for all k. o
The superscript, c, refers to the numerical values employed or computed in
the filtering algorithm. The non-superscripted quantities refer to the
actual or true values of the covariances. Note that the true values are
seldom known in practice. Hence, in 1ight of this theorem we can enjoj the
confidence that if conservative values are selected for the covariances, then
the true error covariance is bounded at any time by the computed error

covariance.

1.4 The Problem of Modeling Errors

Up to this point in the discussion of Kalman filtering it has been
assumed that the system dynamics are known to within a degree of uncertainty
represented by the statistics associated with the state noise, w. If the
uncertainties in the model dynamics are purely random with accurately known
finite, bounded statistics, and more realistically if the uncertainties
are small with respect to the state values, then generally the assumed

dynamic modeling will yield good results. On the other hand, if there are
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modeiingrerrors which contain unbounded time correlated components, or
dynamic biases as they are usually called, the estimation resu]té based

On such erroneous models become worthless. 1In such cases, the system is
not uniformly completely control]abie. In particular, the model errors
manifest themselves 1n'the ¢-matrix which affects the predicted values of
the state, x, and error covafiance, P, -If the filter employs .no process
noise covariance, ¢, or only a constant @, then as the estimation process
proceeds, the state error covariance usually* decreases and so, therefore,'
does the gain, k. As the gain becomes smaller, the effects of the measure-
ments in contributing information become less and less. The effects of
modeling errors continue to grow, essentially no new information is added,
and the state estimate diverges from its correct value. A simple example
will be developed which will serve to 111u§trate these points. 1t is
derived from information given in reference (9).

Consider two spacecraft in orbit about the earth. Assume their
orbits are approximately circular andAcoplanar, and that the vehicles are
undergoing a rendezvous maneuver, and hence are separafed by a distance of
only a few kilometers. Referring to Figure 1.3, Tet r, be the geocentric
position vector of the target vehicle and ry be the geocentric position
.vector of the homing vehicie. Neglecting n-body and aspherical gravitational

effects, the equations of motion can be written as

T _ u
P, o= g(rt) = T;ija- 2,

. _ - _ H

I i P S (1.4.2)

* Recall that |l®k O{lz in (1.3.16) must not increase faster than
IIM;ll][ decreases. A similar characteristic is required in the system

with process noise.
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where (") = d( )/d, p = gravitational parameter of the earth, and |r| is

the magnitude of ».

Figure 1.3 Vehicle Position Vectors

Defining the range vector,

-y - ' o3
p=r -r (1.4,2,

and noting that |p| << |z, | or |7, |, one can expand about the target vehicle

position vector in a Taylor series to obtain

ag(r,)
Brt (rh - rt) + € (1.4.3)

glr,) = g(rt) +
Neglecting €, which represents terms of second and higher order in r, and
using (7.4.1) and (..4.2) leads to the following relation:

. dglry)
p:

(1,403
3 p
rl’“t

Note that neglecting e, as well as the higher order gravitational effects
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has introduced errors in the dynamic mode]. However, for the time being
assume that. (1.4.4) represents the true model, that the orbits are copTénar,
and that the target vehicle orbit is circular wfth the homing vehicle orbit
nearly sd. Further, for purposes of developing a sihpTe navigation scheme
the possibly questionable assumption will be made that the homina vehicle.
is closing at a constant rate, 5, with respect to the target vehicle. Note
that p is the magnitude of the time fate of-change of the rénge vector, p,

i.e.,

)
P

where é = dp/dt. Throughout the rendezvous maneuver, it is necessary to have
knowledge of p and p; however, for simplicity in the illustration, only ¢ will
be considered.

To obtain information abdut o a Doppler radar system is used to measure
the c]osﬁre rate. Associated with this range-rate radar are uncertainties
assumed to manifest themselves as bounded, purely random errors, v in the
range-rate measurements. Assume the vy have the statistics

E{vk} =0, E{vk vg} =R ij, R = constant

Making the following fdentifications with equations (2.2.2) and (1.2.2),

P, = P(o), T =P Hk 1, 4, =0t U,

and assuming no state noise (Q = 0), then the Kalman estimation equations for

Algorithm I are

- -~

Pre = Pr-1
B = Prg

S — -1
K, = Ek[Pk + R]

il

[Z2 - Kk] Pk (1.4.86)

bvhd
I
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*

Recall that Wy is the measured range-rate at t and that b =l Py

Explicit expressions may be obtained for the above quantities in terms of

and Yy In particular, the recurrence for P leads to

PR

A
P = o T _ (1.4.7)

and

%o

K = (P, + F) (1.4.8)

for m observations. Then for 5m,

. m v,
m= Pyt Z_j TR w77 (1.4.9)

=R

From equations (1.4.7)-(1.4.9), it follows that as m gets larger, the estimate
for Sm becomes insensitive to the observation residual since the variance and
hence the gain are becoming smaller. The implication is that eventually a
point is reached where ¥ is so small that taking further observations adds
essentially no new information about p. This is an acceptable {and desirable)
situation if no modeling errors are present, that is if the assumption about
a constant closure rate is valid.

To investigate this assumption further, consider equation (1.4.4) in

terms of the relative derivatives of p.

b= ; +F2WXD 4+ Xp +wx (wxp) (1.4.10)
where w is the angular velocity of the 1ine-of-sight, p, and (n) is the time
derivative relative to the target vehicle. Using equation (7.4.4) one can

find

w dglr.) . .
pP="5 P-2WwXp-WwXp-wX{wxp) (1.4.11)
t

From the first of (1.4.1),
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aii:t) = - [pu|3 (1 - |P3[2 r, 7y) o (1.4.19)
£ e
S0,
. r PT . -
b= - —H_yr_z-t.t)pr _ ' ({13
.]1"t|3 ]rt|2 :
“and
T 7y

? = - —L_vyr.3 bp~2wx 5 - X p=w X (wxp) (1.4.11)
|z, [° N

If the rendezvous maneuver is restricted such that p maintains a constant

angle with respect to r_, then w is constant. Further, because the targét

£
vehicle is in circular orbit,

W = V’H/All"tls k | (1.4.15)

where k is a unit vector perpendicular to the orbit plane. In view of this

restriction,
T
- : ror, R
p= -~ —E— (r-3 Jp-2wxp-wx (wxp) (1.4.16)
3 2
[z EN :

Now, take the scalar product of (1.4.16) with a unit vector in the p-direction

to get

p 7 Ptr:l T a T
p__.._Ezfj_—_ ....-——E—-— E—(I_S )_p_gg_..mxp_a_wx(wxp/]

P 3 P 2 P . P

7, | ™

Sp(pT rt)z .

= - —F—p+ +wp (1.4.17)
2, | plr,|®

p ¢ (wx 5) =w * (E X p) =0, and pT[w X (wxpl]=

x

i
L

]

since pT(mr

(w+ p)? - w? p? = -w? p? But w? = u/[rt[3 : hence,
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H . JJ' \."‘)

JEME

Next,
cos Wt

gin (wt + €)
p=p|~cos (Wt +e)j , r = Irt] sin wt
0

‘ 0
‘where € is a small, constant angle representing the deviation of p from

the Tocal horizontal at the target vehicle (if e =0, p and ft are perpen-
is the scalar prqduct of r and r, ,

dicular). Then, since p° r,

T . ' , :

pr, = plrt[ {sin (Wt + €) cos wt - cos (Wt + €) 8in wt)
= p|rt[ [sin wt cos wt cos € + cos® wt sin € -

cos Wt gin Wt cos € + gin® wt gin €] _
(1.4.18)

= p]rt| 8in €
Finally, through first order terms, and for closure along the 1ine of sight
at a constant angle, e, from the local horizontal,
B = 1T p2 ]pt|2‘sin2 € = |Su]3 p sin’ ¢
x
t

5
JE |
(1.4.20)

or
B-y2p=0, v = T—§$; sin® €, a constant
r
t

Thus, only in the special case where e = 0 is the assumption of a constant
closure rate valid (§ = 0 to first order). The solution to (7.4.20) is
(1.4.21)

found to be
C.’0
=0, cosh Yt + ;— ginh Yt

So,
é =0, Y stnh Yt + 60 cosh Yyt
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and it is seen that there is an unbounded growth'in é. A non-dimensional
form of (1.4.22) is plotted in Figure 1.4.
Returning to the estimation problem, using the original model
(constant p), the observation-state relation becomes
Yy = 5k F UL =0, Y ginh Ytk + 50 cosh Ytk U
and

._'9: . N _" . 4.8
Yp = P =Py Y sinh Ytk + P, cash ytk P * Uy : (1.4,

-
N
M

S0 the estimate becomes

% e 7 . e
P = Py +‘?irjf?€aigr (po Y sinh Ytk + P cosh Ytk - ot vk)
(kwl) + R/Po - s -’e‘)k )
K+ R/P, Pk T K ¥ BB,
1 . . : g e
T R/Po (po Y sivh Ytk + 0, cosh Y?k) (1.4,84)
Forming the error, 6k, by subtracting (1.4.24) from (1.4.22) aives
- (k-=1) + R/Po . - Uk ‘
=1 Tk + E/P, (g Y sinh Yt + 0, cosh Y, - o) - 777 R/
(1.4,25)

From (1.4.24) one can see that as k increases, the additive effects of the
last term become less (since y << 1), and Sk tends to a relatively constant
value. In (7.4.25), the term in square brackets tends to I, and since E;
is approximately constant for large k, the hyperbolic trigonometric terms -
eventually dominate, driving the error to intolerably large values. As
hefore, the cdmputed variance given by (J.f.?) decreases to zero.

Consideration of state noise to represent dynamic model uncertainties

has been shown to have the effect of keeping the error covariance from
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vanishing, and Tikewise, the gain. For the rendezvous example, let I in
equation (7.2.7) be the identity matrix. Further, let the process gengratinq
Wy be stationary so that the variance, Qk,z @, is a posftive constant. Then,

= ' i.4.0¢)
I , _ ‘e

For & = 1,
K1 = Zv"*ll/[P;. + R]

Assuming the initial estimate error is zero, the actual a padcad variance,

0y 18 simply #. Then the simplification may be made that

_ kR 1+ F - A
i N A
and
_1+F
Pr=%5Fh
For k = 2,
5, _ li_f] _ a1+ rf ]_ 1’_+é’f_+_.i}
Pz =k [2 e L [2 £ f7 o [ 2+ f
Ky = P __ (1 + 3+ £8P _ 1+ 3+
Po+ R (14 3+ f2/0(2+F) +1 3+ 4df + 12
. a2
Pz:[M}J?
3+ 4f + f*
For & = 3,
= |1+ 3F+ %) .
P3"[(3+4f+f2)+f]3
3 [I + BF + 512 4+ 3 5
- Z+ 4F + 12
Ko = 1+ 6f + 5F% + §3 _ 1+ Bf + 5F% + f3
ST+ 65+ b5f2 + f3+ 5+ 4f + f2| T T+ 10Ff £ 672 £ J3
P I e
ST 4+ 10f + 6f2 + F3



For & = 4,

= T2+ 10f + 157 + 7£% + £
P“.‘[4+10f+6f2+f3 JR

P _[1+10f+ 15j'2+7f‘3+f“]
YT LS+ 20F # 21F% F 8f° £ e

Py = Ky R

Finally, for & = 5,

5 [1 + 18F + B5F% + 287% + of* +f5J
s 5+ 20f + 21f7 + 8F% + fu

Ve = [1+15f+ 35f2+28f3+9f“+f5]
57 |6+ 35f ¥ 56f2 + 36£% + 10f* + 5.

Ps = Kg K

Examining these values leads, by induction, to the relationship

i (m+k) P
' =0 m=k

- i (mi—k+1)fk
m—k

=0

a\y _ al
where (b) = Tab)T1 B

35

(1.4.27)

the binomial coefficients, and f = @/R. p_and 5% are given as before.

It is important to investigate the limit of K, as k> oo,

to the recursive relations

h‘hdl

!
i
o
+
&

k+1 k

then

Returning
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= = + _ ' (1.4.28)
P +R -
Now, as k » =,
PR
— oo
P =— + G 3 : (1.4.29]
P+ R
oo
. . = Lim =
where the notation F_ means froco Pp -
Solving for P
- + /O7 F R0
P =22 Lty (1.4:30)

where the + sign is taken since it is required that P > ¢. However,

Po o+ ST AGRI/E
Y B +R (Q+ VG ¥ 4gR )/2 + R

1+ ¥ 1+ 47 ' | | . ' l(z.4.sz)
14+ VI T T+ 2/F , |

and therefore,

y [ I+ VI £ /T JH
1+

T+ 477 + 2/F (1.4.38)

Noting that X < 7, and 2_ < &, one may write

Ko, < K <1

LN

LE8)

P, <P <R (1.
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The fact that P and ¥ do not vanish due to therpresence of ¢ does
not in general prevent divergence of the estimate, when unbounded model
errors are present, but simply delays it. Forming the estimate for very

large & , one obtains approximately,

P ™ [7 - K] Pp Kw[poY sinh Ytk + pg cosh Yz"k + ‘z-’k]_,

. 2/f S
1+ T+ d/F+2/F| %

1+ V1+ 4/F
1+ V1T + 4/F + 2/F

The corresponding error is approximately

:I(po‘( sinh Ytk + Do cosh ‘ftk + ka {1.4.34)

v 2/f . . 0
P, = (PoY &inh YE, + po cosh Yt, - 0.)
k [1+ 1+4/f+2/f] k koK

1+ V1t 4/f U' (1.4.35)
1+ k

Y1+ 4/F + 2/F

Thus the non-zero steady-state gain, X . continues to provide information to
improve the estimate of o. MNote that as @, and hence f, becomes very large,
the error asymptotically approaches the error due to the observation noise.
However, after a sufficient amount of time, the estimate stili diverges owing
to the unboundedness of the model error. |

The question remains: "How does one compensate for modeling errors so
as to allow a workable estimation algorithm which provides accurate and useful

estimates?”

1.5 Literature Survey

The effects of dynamic model errors have been examined by a number of

investigators, among them Heffes (10), Schlee, ¢t af. (11), Price (12},
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Huddle and Wismer {13), and Meal {14). Most of these investigations are
concerned primarily with performance degradation of the estimation process
(which is the Kalman séquential estimator in 511 cases), and offer equations
which provide a measure of the degradation. These equations are generally
based upon the error covariance and are structured in such a way that model
errors may be seen through their effects on the error covariance.

As mentioned in Section 1.1, model error compensation technigues may
be classed loosely as adaptive or non-adaptive. Technigues from both camps
may be further classed according to their basic approach to the prob1em.- Cn
thg one hand are techniques which simply alter the actual estimation or filter-
ing equations. These approaches generally attempt to maintain the error
covariance, and hence the gain, at a level which will continue to provide
corrective information for the state estimate. On the other hand are found
methods which attempt to improve knowledge of the dynamic model. The former
~approaches usually aim at computational simplicity, but pay the price by
compromising optimality. The latter methods are usually more in keeping with
the optimality properties but generally are computationally more demanding.

The technique of representing modeling errors as white noise is an
easily implemented approach which is perhaps the most conservative. Numeri-
cally, it amounts to merely increasing ?% by adding the @, matrix to P, . ®T,
As pointed out in the last section, thfs merely delays divergence if the
errors are unbounded, but can be effective for small, bounded errors, i.e.,
if the system is uniformly comp?ete]y'contro1]ab1e. The consideration of
state noise is employed so often that it has become part of the standard
linear, unbiased, minimum variance estimator {5, 194-209), {15). Howevef, in

the face of incomplete knowledge of the dynamic model, ¢ must be guessed.

k-1
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Rather than arbitrarily select a complete matrix of values to be
added to the error covarianée,-an effective and simple method is simply to
scale the errbr covariance by a scalar. This has been done recentiy by Tarn

and Zaborszky (16). A scalar, s > 7, is selected and used to scale P after

each covariance update. In the application to an inertially navigated glide
vehicle, it was concluded that 7 < & < 7.5, and that satisfactory results
were obtained for g - 7. 2. |

Fagin (17) introduced the concept of exponential age-weighting of the
observations. The effect is to downgrade the value of old observatiohs SO
that the most current information dominates the estimate. Fagin's development

is based upon a recursive least squares derivation, where

iy T -1 -
Jk = %{mk ¢ (o, k) PO ®(o, k) xk] +

-1

k
. T = . .
% ) ly, - By o4, k) =, 1" R, ly, - H, 00i, k) 2] (1.5.1)

t=1

is minimized with respect to - In the standard ieast squares approach,

7% =g However, Fagin modifies R, as

= ) ) ) .
E} = exp [(tk ti)/T] Ri, 1>k {1.6.28)

where T is an arbitrarily chosen time constant. The resulting estimation
equations have a form different from those of Tarn and Zaborszky; however,
they are equivalent (this will be shown in Chapter 2 along with certain
requirements on the scaling factor).

Miller (18) examines the behavior of the Kalman filter for continuous
and discrete time invariant systems with exponentially age-weighted observa-
tions. He derives equations for the filter eigenvalues to provide useful

guides for choosing the aging time constant, .
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Schmidt (19}, (20) offers two unique methods for overcoming model
errors. One utilizes a scalar parameter b to scale the optimum gain, A, with
an attendant increase in the updated covariance matrix. A second techniqué
adds a judiciously selected term to the Kalman gain with the corresponding
effect of an additive term to the updated covariance. In both methods the
values of the parameters ihvo]ved are related to certain configurations of the
Kalman estimation equat{ons. Both techniques effectively ovef—weight_the more
recent data, |

Limited memory filtering is a useful technique for counteracting mode]l
errors. Here, only a 1imited batch of observations are employed. However,
the "batch" is updated in the sense that old observations are effectively
discarded as new observations are added. Hence the dynamic model is required
to be commensurate with the data only over a short time interval. While a
number of Timited memory filters have been developed, one of the most efficient
and easfest to implement is due to Jazwinski (21).

Adaptive techniques form the méjority of model error compensation
methods. Here attempts are made to estimate a parameter vector, g, whose
elements are unknowns in the model. These may include elements in ¢, 7, Dy
or . Mehra (22) places adaptive methods into four categories.

1. Bayesian

2. Maximum 1ikelihood

3. Correlation

4. Covariance matching

Bayesian methods involve determining the a pestenioni probability

density function, plx,, a[vk). Employing Bayes' Theorem,
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7 P(Vkla) p(di
Pz, al¥ ) = plala, V) paly,) = p(z, |a, V) b7 (1.5.3)

Since
pey,) = gpfykla) plal) da,
then

p(Y, la) pla)

p(mk, a|Vk) = p(xk]q, Y/ (1.5.4)

.f p(Vk]a) plat da
A

where 4 is the set of all q. Usually a recursive formulation is desirable.
Noting that

pey, ) = p(yk|Vk_1) Py, ;) (1.5.5)
substitution of (1.5.5) into (1.5.4) yields

P(yklvk_l, a) }J(c‘llvk_lJ

2l

» aka) = P(mkfa, 14

J
k
{p(ykwk_l, ) plaly, ) da

where p(Vk_l) has been divided out of the numerator and denominator. Now the
optimal estimate of x, 1s the conditional mean (22, XIV.1.1)
&y = E{xklyk} = ﬁ; . p(mklvk) dac,

K
and for the problem at hand,

{

& = j;_,k Ji @ plz,la, V) dzplalV) da

or
& = ‘gﬁk(a) plal¥,) da (1.5.7)

Using the quotient in (7.5.4) substituted for p(a{vk) completes the formu-

lation of the algorithm.
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The obvious difficulties in (7.5.4) are the evaluation of the pra1vk)
inteqrals over 4. Magill (25) develops the above algorithm approximating
the integrals by summations of discrete probabfiity distribution functions.
Thus, |
n
Z, = mk(ai) P(ai|Vk)
1=1

and

iy
.

Pl Yy g @) Plagl¥y ) (1.

¥i ] o
;E: p(yk|Vk_l, aj) P(alek_l)
=1 .

P(ailvk) =

where (1.5;5) haé been employed. This alaorithm can be effective if the
dimension of « is not too large. To iﬁp]ement the procedure, the values of
the a, must be precomputed; therefore, large » increases the computatfdna]
load. Further, the appropriate probability density and distribution functions
must be assumed.

Maximum 1ikelihood estimation is based upon maximizing a likelihood
function, L, formed as

L= tn ple, a[Vk]

with respect to the state, x, and the parameter vector, a. Taking partial
derivatives with respect to the appropriate eiements produces a set of
ysually nonlinear algebraic equations. Thus the disadvantage here is that
an iterative method is required to solve for the estimates, or else some
approximation must be made which yields suboptimal estimates. Further, the
density function must be known, a prioni. Alternately, using the marginal

density function, pnxlvk), it is sometimes easier to derive an estimator for .
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The basic approach of correlation methods is to relate the auto-
cerrelation function of the observations to the unknown parameters. These
methods are norﬁa]]y applicable only to constant coefficient systems and
therefore will not be discussed further. The interested reader should see
(29) and (30).

Covariance matching techniques attempt to make the observed residuals
match their theoretical covariances fhrough the appropriate-choice of the
unknown parameters. Approximating the theoretical covariance of the residuals

by the sample covariance, one has

= 1 T '
Vo= == z: ' [
Vm po v, \)7. {

where v is the theoretical covariance, V is the sample variance, and v is the
vector of observation residuals. .The limit, m, is chosen to provide a sem-

blance of smoothing. FEquating v and 7,

7 T L= e
? +1‘ri]ff§{+n_vk (1.5, 70

k-1
Care must be taken to insure rank is consistent with the number of unknowns.
For example, if @ is being estimated, #T must be of equal or greater rank
fhah @ in order to obtain a unique solution for the elements of g. Alter-
natively, additional equations may be obtained for different times. For
elements of, say, &, (1.5.10) is nonlinear, hence an iterative method is
generally required. In passing, it is mentioned that covariance matching
techniques appear to give fair results (24), and seem to be easiest to
implement, &

The adaptive techniques discussed above have been used extensively to

estimate the state noise covariance matrix, as well as other parameters. We

have already mentioned Magill's use of the Bayesian approach to develop an
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adaptive alqorithm for estimating parameters which afé allowed to take on
only a finite number of values. |

Maximum Tikelihood estimates of the state noise covariance are
obtained by Abramson (26), Sage and Husa (27), and Levy (28) to name a few.
Abramson-provides a complete and detajled deve]opment of optimél and sub-
optimal methods for simultaneous estimation of the state and of the noise
statistics. While his apﬁroach offers estimates of the diagonal e1éments of
@, Sage and Husa (27) have extended the approach to yield estimates of all
elements of ¢, a]though_proof ofrconvergence is not established. Using the
Sage~Husa algorithm, Levy has constructed a reprocessing filter which period-
ically reprocesses the accumulated data to obtain increasingly improved
estimates of ¢ (and 7). In the same work, Levy‘points out some shortcomings
of the Sage-Husa approach, and subsequently produces-a corrected iterative
algorithm for simultaneous estimation of ¢ and R,

Mehra (29) uses the 1nnovat10n§ correlation approach to provide
estimates of ¢ and » for time invariant systems. The method is Timited to
cases for which the number of unknown elements of @ is less than »n x p,
where n is the state vector dimension, énd p is the observation vector
dimension. In cases where this restriction is violated, the Kalman gain
may be estimated directly, although this alternative utilizes an iterative
approach. In (30) Mehra applies the observations correlation approach to the
identification of time invariant system parameters.

Jazwinski (31) uses a maximum likelihood approach to develop a state
noise covariance estimator. The joint probability density function of m
residuals is maximized with respect to ¢. For the case of one residual,
normally distributed, the result is identical with.that for covariance match-

ing. One residual is not a meaningful statistical sample; however, using ‘the
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Sampfe variance of a larger residual sample, Jazwinski has obtained
satisfactory results (24).
An effective approach to édaptive]y compensating for. modeling errors

s to consider the state noise as being correlated in time, and mode] ed by
the first order Langevin differential equation,

w(t) = Cult) + ult) . (1.5.11)
where ¢ is a diagonal matrfx of constants, and u(t) is a white noise process:
with statistics,

Elult)] = 0, Elult) wr(e)] = 0(t) &(¢ - 8)

By extending the state vector, x, to include the elements of u:, the problem
resumes its original form with the only difference being a larger state
vector. The specification of ¢ is generally not an easy matter; however, by
also including its elements in the state vector, the value of ¢ may be
adaptively estimated. This approach has been used successfully by Ingram (32)
in representing the effects of time correlated random accelerations acting

on the Apollo spacecraft. Schutz (33) has used the same approach to account
for the effect of mascons in the lunar gravitational field. Tapley and

7 Hagarr(34) have successfully utilized equation (7.5,77) as well as the second
order equation,

Wwit) = Qwit) + ult) (1.5.12
to. represent time correlated uncertainties in the thrust acceleration vector
of a continuous low thrust, solar-electric spacecraft. The possibility of
utilizing higher order models to represent time correlated noise is also
indicated in (34).

A particular disadvantage of each of these techniques is that unless
the constant matrix, ¢, has some state noise variance associated with it,

it will settle to some constant value since its associated gain will vanish.
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As a result, unless the correlated noise representé the moﬁe1 errors exactly,
divergence of the estimate will eventually occur (35).

It is obvious that1theré is great latitude in selecting fUnctioha1
forms to represent auto-cofre]ated model errors, and these Eange from the
use of simple constants byVRuésell and Curkendall (36) to higher order
differential equations (37). An obvious problem is that of selecting the
cdrrect fuﬁctioné] form or stfucture. This problem has beén touched on

briefly by Lainiotis (38), and will be considered further in Chapter 3.

1.6 Qutline of the Investigation

As stated in Section 1.1, this study investigates the utility of a
variety of model error compensation techniques and provides a comparison of

the effectiveness of these methods. The particular techniques investigated

are selected from those mentioned in the previous section, along with several
extensions and new approaches. The study is limited to implementation using
the Kalman sequential estimators (Algorithms 1 and II) presented in section
i.Z, and the error compensation methods studied are general enough to be
applicable to time varying as well as time invariant systems.

In Chapter 2.the suboptimal non-adaptive methods of the Schmidt
modifications and of age-weighting devices are presented. Also presented
in this chapter is Jazwinski's Timited memory filter algorithm.

Chapter 3 is concerned with adaptive methods, both optimal and sub-
optimal. Jazwinski's adaptive technique for estimating the state noise
covariance is presented. Several extensions are given, and the covarianée
matching technique appTied to yield adaptive forms for the Schmidt and age-
weighting algorithms presented in Chapter 2. The briefly mentioned problem

of structurally adaptive filtering is considered, and results are obtained
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for certain restricted forms. A new method is deveIoped_for estimating the
§tate noise covériance matrix. The resulting algorithm enploys the linear
minimum variance sequentiai estimator to adaptively estimate the state ﬁoise
cbvariance elements for the case of 1inear observations. The sane approach
is shown to be capable of modifying the error covafiance_elements directly.

Chapters 4 and 5 apply the previously presented algorithms to two
dynamic systems. The scalar rendezvous problem preseﬁtéd in section 1.4 is
used to provide tractable, closed-form solutions and to offer insight into
the nature of many of the methods. In Chaptef 5 a second problem of a more
complex but realistic nature is investigated using the most promising
approaches indicated in Chapter 4. This concerns estimating the heliocentric
trajectory of a continuous Tow thrust, solar-electric spacecraft, subject to
errors in the thrust acceleration vector. A comp1ete.descripti0n of this
prob]ém is given in Chapter 5.

Chapter 6 is a concise summary of the investigation and presents the

general conclusions and recommendations for further study.



Chapter 2

NON-ADAPTIVE METHODS

2.1 Age-Weighting of Data.

The rationaie for age-weighting the observation data to compensate
for model errors is this: The Kalman filter uses all the data as information
for obtaining an estimate. However, the dynamic ﬁodei assumed in the process
is in error and therefore yjelds é reasgnable apbroximafion to the true
motion over only a finite interval of time. fherefore, attempting to make
the data consistent with an erroneous model over the total estimation period is
unreasonable over a Tong period. A logical alternative is to downgrade the impor-
tance of the older data. Fagin (17) does precisely this by minimizing = in
equation (1.5.1) where E; = exp{(tk - ti)/r] Ri, with 7 arbitrarily chosen.

The results are equations (2.7.2) with & - emp[(tk - ¢,/

For the derivation here, a slightly different and more direct approach
due to Tarn and Zaborszky (16} is qiven. Here, a general function, =, is used
as the weighting factor instead of the special case of an exponential. Pro-
ceeding heuristically, it is noted that aqing the old data (decreasing its
importance) will yield the same results as increasing the importance of the
more current data. This may be accomplished simply by scaling the error
covariance by s, with & > 7. Thus the error covariance and hence the gain
is increased so that more importance is attached tb the more recent observa-
tions. The suboptimal covariance, denoted as £°, is sp with the Kalman

equations modified by simply substituting ©° for p. Thus,

a8
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Freg = 80y

P o=ep=, o 4 rg, _, rf

'Ek =98

K, =P, HH P, A"+ gy

B, = E? + Ky, - 5%}

P, =(I-KH P (8.7,

These are the results arrived at by Tarn and Zaborszky. We note in passing
that since their results contain both the additive state noise covariance and
the s~factor, there is some redundancy. The presence of the s-factor simply
slows the decrease in the error covariance, and tHe algorithm is thevrefore
suboptimal. Setting ¢ = ¢ in (2.1.1) and using the definition of #° one

easily obtains Fagin's form,

> s T
Ek = ¢ Pk—l i
X, = ] Ty
- T - T R-l.
K =P HIHP I + 2]
?k = @ + Kk[yk - " rk]
p% =e(r-xm P (9.7.5)
K = 8(f = P Fiw daid

where s = exp [rtk -~ tk_l)/%].

The effects on the age-weighting algorithm for various values of o
are now investigated. First, if s = 7, equations 72.7.7) and (2. 7.9) are
just the Kalman equations of Algorithm I. If s is very large, the gain

approaches a value such that #X = 7, in which case only the most recent
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abservation is considered in forming the estimate. This latter fact is seen
by premultipiying (1.2.8) by H.

To gain further insight into the algorithm, (2.7.2) is used to form
the variance between a perfect measurement and a computed measurement (for
a single observation), HP°F". For a perfect observation, y = Hx; for the
computed observation, 7 = F&. Differencing these and taking the expected
value gives |

y=y-§=dlx -3 =Hzx

By i1 =5 2 A"

which represents a measure of the estimation performance for comparison with
the Kalman filter. For the case of scalar observations (to which the vector
case can always be reduced), (2.7.2) is used to obtain

- 7 oplye ' ‘
Ol [H P A (ﬁipTﬁ / ] (043
(HT H + R/s)

Introducing the definition

e ZR/MPH >0, (8.1.4)
eguation (2.1.3) becomes

sk

s T
HFP H S (2.1.5)
For the optimal Kalman filter, s = 7, and
Tr_ _ R o 7 oa
HPH = I+ (£.1.8)
Forming the ration of (2.1.5) and (2.1.8),
SH -1+G=S+SC>I,331 (2.1.7)

g + e B g8 + -
Thus, the measure of performance, given by ¥r°s® for age-weighting, is

bounded below by that for the optimal filter. To obtain an upper bound,

consider (2.1.5) in the 1imit as s - =. Employ L'Hospital's rule to find
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lim H P° 0T = Uinm =R 2.1.8)
s +
gree , g0
The values of HPkHT are then bounded according to
0<sX—<wpH <m s> 1 , (2.1.9)

1+ e k
for k > 7 (after the first observation).

The variance of perfect measurements, HPHT, fofms a useful common
denominator for comparison among various algorithms, . Letting'this guantity
be denoted by =, the corresponding relationship with & way be found. Again
considering the case of scalar obsefvations, equation (2. !.5) is manipulated
to give the following sequence:

K =ec=sPa -nrampE” + 2,7 g EaT)

La)

e 507 = 501 2

H"P'HT(HFHT+§)“

e+emppylE

sfH?HT+§)_sH§HT
se+eHPH)  raps

oy

€ 1
g = —— [ ] (£.1.1ia)
Pz HT 1 ~-¢e/R

This resuit is consistent with (2.1.9) as can be seen by solving r2.7.10)
for ¢ and noting the results as ¢ » 7 and & » =. Note that as € »~ 7, 5 - o,
and the estimate depends more and more upon the latest observations.
Implementation of the standard age-weighting algorithm is straight-
forward (Figure 2.1), and may be done using efither equations (2.1.1) or

(2.1.2).
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£, Py

s or e, k
max

k = k+l

Figure 2.1

Age-Weighted Data Algorithm
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2.2 Schmidt Suboptimal Filter: Scaling the Gain

Schmidt (19) considers modifying the gain term directly using a
scaling constant, 5. The state estimate is then given by
o=z, + b Kk[yk - mk] | (2.2.1)

and the corresponding error covariance can be found from

~ _ _ o =: _ 7r _ 7 . = _ 7 - 2-1 '\/‘,
L = Ty = & =T, b Ak[yk H mk] ® = b Kij x, vk] {
P ={T-bk HIP I -bk HIT+b2Kkpi"
Tk k k k k
=P -bKHP-bBPH K +b2xHPHY + 1) &7
or
= - L 521 T T = T -1 = P,
Pk—{I (2 b%) P, H[H P, H + R] H}Pk (8.8, 3)
Proceeding in a manner similar to that in section 2.1, Schmidt forms
neat =n P ut o - uF T ey T AT (2.0 1)

Considering scalar measurements as before, Schmidt specifies Hg%HT at some

acceptable value, e, and subsequently solves for b, yielding

b= s +q€(H§HT+R) - rupnt
(F P Y2

for which real solutions exist when

=T
e>h |—EEL | - rax . - CRE
HPHE + R '

and the positive sign in (2.2.5) is taken to insure p > 1.
The effects of various values of » may be seen readily by examining

equation (2.2.3).
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b =1 Standard (optimum) Kalman gain and error covariance update
- equation
1<p < A smaller than optimum term is subtracted from ?% in forming
the updated covariance, P, r
b =2 Pk=f5k

b > A positive term s added to ?%

Extending Schmidt's analysis, corresponding values of ¢ are easily found to

be
cor[ 2L ] for b = 3
HPH +F '
[ up4” = T ' |
R—**—:——T—— <eg <HPH for 1 <p < 2
HEPH + R
= T
E=HPH for b = 2
= 7
eE>HPH for b > 2

Further, values for b and € may be found which yield #X = 7, thereby
forcing the estimate to depend only upon the more recent observations. In

this case,

bHEK =bAPE@EPA + R <1

or
= T
HPkﬁY + R

-~

Do

g
~3

b <
— 5 T
HPkH

Using (2.2.5) and (2.2.7),

HPHT + B - e(HPH +R) - RH T
#P T T (7 P gL,

one may solve for € to obtain

£ < K (s,

5}
N

(K5



In view of (2.5.6), (2.5.4) requires that

R[—F——(<e<r | (2.2.9)
R+HP, H
or
REK<e<R (2.2.10)

For estimates based upon only the current observation, equality must hold in
(2.2.8). 1t may-be recalled that this agrees with result obtained for the
age-weighting algorithm.
Implementation of this algorithm is straightforward. A slightly
different approach involves using the following modified form of (2.2.7):
HP 0"+ & \

b=o | —K . (2.2.11)

where #X < o < 1. The lower Timit for o follows from the requirement that

b > 1. MWhen applied to the Kalman gain, the following result is obtained:

HEHT+R] 7 g” . B (2.5, 7%
(5Pt +r) wPuT

and the covariance update equation (2, 2.3) becomes

, sl o 7
_h _ ) a2y ! i —H }I
HPH H7rn

(0.2 138)

P=F- {8 - (1 +

Suppose a = ¢//#. From the limits on n, the corresponding Timits on ¢ are
seen to be those in (2.2.9). Thus, € = % results in estimates based upon
only the current observation.

The gain scaling technique using a constant value of & can lead to
some problems, and this will be shown specifically in Chapter 4. Another

alternative method is to determine » as

i

a7t

b=14+8 0 <B <1 (2.0054)
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The Timits on ¢ correspond to the expected limils for / dJdiscussed earlier.
In particular, g = ¢ gives & = 1 resulting in the optimal Kalman filter;
f =1 gives the value of b indicated by equality holding in (2.2.7}, i.e;,
all information is obtained from the most recent observation. Employing
(2.2.14) in the gain and the error covariance update equation (2.2.3) gives

the following:

K =hb K
=11+ REF " Tt p
HTH
= PH + 8P m a1 (me s+t (5.0.15)
, 2 5.2 22 0
2b—b2—?+? B__}?T_i"g B_hT“ B-—.flT = 7 - [.')_.11’__
HPDH HPH (H P H )2 (H©OH)E
(2, 0,18)
Z 2 _ — — —
P =T - [1———6__HT—]PHT(HPHT+RJ Tuy? (2.2.17)
(F P gY)?2
Forming iz yields
v (HEH' +8%R)
Hpal = La R (2.5.18)

HP BY + R
It has been indicated by Schmidt (20) that this method of determining »
yields estimation results identical with his additivé gain term algorithm
discussed in the next section.

The gain scaling technique for constant » or (2.2.14) to determine »
is diagrammed in Figure 2.2. Figure 2.3 gives the logic flow for the modi-
fied gain scaiing_a]gorithm using equations (2.2.13) - (2.2.13). For this "
modified approach, it is possible that a value of € might be chosen which is
initially less than the lower bound given by (2.2.9). This is not generally

desirable. The philosophy here is to operate with the ordinary Kalman filter
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Compute
b 7

k= k+1

K =FHMHFHE + 1)

:

P, = [I - (eb-b2%} K H} P

¢

=z + b Ly, - # %]

er>

Figure 2.2 Schmidt Suboptimal Filter: Gain Scaling
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Yes

HEPH

Mo

\/

By

=7 a%w et + R

v

P.o= (I ~KH) P

d=20-(1+—=)()?
HPH
_—T—
p, =7 - g LA
HPH
ko= R+l <l

Figure 2.3 Modified Gain Scaling Algorithm
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equations, and when HeHT = £, switch to the suboptimal modified gain scaling

equations.

2.3 Schmidt Suboptimal Filter: Additive Gain Term

A second approach taken by Schmidt {19} is to add a judiciously chosen
term, L, to the optimal gain, ¥. This approach is possible only for scalar
observations. The suboptimal term is given as

i
8L, =28 i) (2.5, 1)

X T 8T 7, i" + )

so that the actual suboptimal gain is found as
M, = Kk + B Lk

R AT
(H HY) [H P, g%+ R

(2.3.8)

_ i e T -1
Pk H [H Pk H +R] ~ + 8

If 8 is chosen as

[z—z T ow o+ on
B=R" ko
7

then
el
" ut

B L=g"

If one considers the estimate of x with no a pricnd information, one obtains
H = # o
£ o=z 4+ 7 [yk - H xk]

where 1" is the pseudo inverse (45, 82-89) of 7.

T

HoH
Ho= T

HH
Then (2.3.2) is simply a 1inear combination of two gains: the optimal gain
for all the observations, and the gain for no a priond informati@n, given by

the pseudo inverse, H#.
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The updated covariance equation is also modified. Using (2.5 to
form the state estimate,
mk:mk+Mk[_yk- Hex ] | (£, 3.3)
and subsequently the estimate error,

sy ~ . ) . 9. 3.4
T T Mk[ka_'ka]_ _ (2,5.4)

the error covariance is determined as

- o~ 7 F— T T

E{mka:k ,_pk_(I-MH)Pk(I—MH) +MEM
= tr-w PPt M emuBET ) M
But since

— — 7 R HT — g F T

MEPH + 1) = (EH +8 ), P =(r-mMu) P +8LTL p
T x X T
HH b (2.3.5)

Thus the updated covariance matrix is of the same form as the optimal equation:
with the exception that the suboptimal gain, m, is used, and an additional
term is added. An alternative form of (2.3.5) may be found as

P =(I-%0) P _+8"R L H/(8 7Y (2.3.8)

This is the form derived by Schmidt.
Reasonable Timits for B are readily established by considering #M,
formed using (2.3,2).

1 1

It

+ B R(EDEY + R
1

HM=HDH(HTPH +8)

(HPH  + B RIGHD H + R)™ (2.3.7)

i

As before, for HM = I, the most recent observation drives the estimate.
Hence usihg (2.5.7)

HM<1=>8<]I
The Tower 1imit on g is established heukistica]]y by considéring the fact

that B < 0 decreases the optimal gain, an effect which counters the idea of
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depending more on the recent observations. Thus limits on g are
0 <p <1 , | | a 7 : B SN
For 3 =0, ¥ =#K; for 3§ = 7 only the current observation is used to deterine
the estimate.
It is interesting to extend Schmidt's analysis, and find the relation-
.ship between » and g. Forming #PET from equatfpn (2.3.6),

' 1

nrH = P A m o ET + o) 1

+ B2 RAH B ET + )T
Denoting ¢ = prE®, as in section 2.2, an expkession for g may be found.

e Pul + ) = HPH)NETBE +R) - (0P aT)? 4+ 82 w2

or

= T =T
6= 4 ﬁJE(H PH _+R) -HPH K (", 3.9

Rz
where the positive sign is taken in light of (2.3.8). Now comparing this
with the expression for » in section 2.2, » may be rewritten as

R

HP 5

b=1+28

{2.3.10)

Equation (2.3.10) is identical with (2.2.14), and therefore provides the
tink between the gain scaling and additive gain term algorithms. It should
be noted that this relationship is derived by forming HEHT, and then developing
the equation based on this. By examining equations (2.2.15), (2.3.8),
(2.2.17), and (2.3.6) one will see that these gains and covariances differ
by the presence or absence of the error covariance matrix in the suboptimé?
term. The case where it s present, i.e., the suboptimal gain term is given
as
B RB &Y
(HPH)(EEH +R)




¥4
is in fact more general. This is true because when the.suboptima1 gain term
is
B R A
(n #5)m P at + B

any zero terms in # prévent contribution to the corresponding optimal Kalman
gain térm. Usually this does not occur for the former case.

Note that in deriving (2.3.120), when HEPHT is formed for each instance,
the differences in the suboptimal covariance terms disappear. Hence these
differences do not occur in (2.3.10).

Conditions for g may be established similar to those for p» in section
2.2, In particular,

B =20 Standard (optimum) Kalman gain and error covariance update

equation

= 47 A smaller than optimum term is subtracted from ?k in forming

0<p<LEE
the updated covariance, P
- T
HPH =
B==—% P =P,
g < PHT A positive term is added to ?}
I3

Employing (2.3.8) and (2.3.9), 1imits may be found for ¢.

B=€em§a'-‘"+m - HPH R
R.Z
or, using the inequality,

e <R (2.3.11)

which is just the condition established in section 2.2.

As in the previous section, real solutions require the radicand to

be positive; i.e.,
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Cwa Tt
T Tt e

which is just the inequality (2.2.6).

The implementation of this algorithm is given in Figure 2.4.

2f4 Liﬁited'Memory Filter

The hhilosophy beh%nd the limited memdry filter is similar fo that
of the suboptimal techniques presented in the previous sections. However,
rather than weight the data in some arbitrary sense, Timited memory fi]ters
"discard" old observationé._ |

Jazwinski‘(21) develops a limited memofy which is subOptiﬁa] only in
the sense that it does not take into account the information from all observa-
tions in forming the state estimate. However, the filter equations
developed are, in fact, optimal over the set of observations considered.
In other words, for some subset of the total observations, fhe'1fm1fed memory
filter provides a linear, minimum variahce, unbiased estimate of the state.

Jazwinski's derivation applﬁes to the aeneral, nonlinear case. However,
it requires assumption of the probability densfty function. He also shows
that the Tinear Timited memory filter may be derived from least squares con-
siderations. Since concern here is with the linear problem, this approach
is sufficient for our pUrposes. The derivation is duplicated here.

Consider the estimate of the state at time £, based on observations

through time tm. As defined fn'Chapter 1, this is denoted as The

k|m®
least squares estimate of x at t, based on observations through time £ s

derived (5, 206) as follows: Form the performance index, Jk,_as

J-:%(:C "'-'?:

)T (- &)
K m m|m m[m m mlm

A
L2
e
.

k
T -1
% i;%ij (yi - Hi xi) R, (yi -H,x)



Given:

ﬁ[): PDJ
B, kmax
k=1
ko= k1 iL
A - _ ./\
L, f ¢ L g
= ' T
P =0P_ & )

| M# = PH +RRE/(HHIIEDE + R)7T

o=+ Mk[yk - H ak]
’ T

P, =(1-ME F+8 H——IEMT
| | HE

No

Figure 2.4 Schmidt Suboptimal Filter:
Additive Gain Term



Recalling that w, = @k!m -

i s T T
J,o= J‘i(ﬂ:k fﬁklm) &

+
k k,m mlm q)k,m

] (y, -H, 9, &) R (y.,-H &, =«
e i i i,k 'k i i i "1,k k

Further, define

- + [ 7
Y1 | Hoe1 Pme1, i
_ ym+2- _ Hm+2 cIjlm+2,k
¥ = 2 = )
,yk . _Hk J
“and - _
7 )
R I
mt+l!
B
1 -1 1
ez |
Fl=
T
.—l |
M
Then,
T -1

J, = ¥(x - 2.0.)

X x " “k|w Fx|m %k "

J

~ ) - Ir T =-1— poe
xk|m)+-%(y -Hx) R Ty - H wk}
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f2.4.4)

Next take the gradient of o with respect to Ty and set it equal to zero.

57, = P};l'm(:ck A R G -Fey =0
Solving for = By W obtain,

ﬁk,k ='[P;im + 7 E.-% AT ARy E%Ti xkfm]
or ‘

ik = Pk]k[§ﬂ1§‘dl ¥+ E%Ti Tk | m)

(2.4.5)

(2.4.6)
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The fact that }}]k
Notice that if there is no a priori information about S then P;fm -

= [P;?m + 7" 7 T ETT follows from equation (7.3.5/.

e

and (2.4.¢) reduces to the standard weighted Teast squares algorithm. In
this case, letting ¥ = k - m, equation (2.4.8) is used to obtain *

T—-1=.-1=7—-1

xkl(N) = [{ R 7] H R Y
or
- B =7 — =] — : R
xkl(N) -—-Pk|(N) H E Y 7 (o.4.7)
Now combining equations (2.4;6) and (2.4.7) one obtains the following
sequence: '
~ P [P-l ~y + P_l ~ ]
ke T x|k k| w Tkl T ke Tk|m
-1 4 -1 . o1 A
Pk|k rle T Pkl(N) x|y T Pklm “k|m
2 2 T S (2.4.8)
klwy — Tkl Ykl Tk|k T Tk|m Tkm G
with
_pl -1 -1 fn
Pk|(N} = [Pk’k Pk|m] ‘ (a.4.8)

“The Timited memofy_fi1ter equations descr%bed above are_obvious]y
more complex to implement than the previously presented ftherﬁng algorithms.
Essentially two Kalman sequences are required to be run for each "batch" of
I observations, and three matrix inverses are requifed every & observations.

Further, the ]imitéd memary filter estimate is obtained only every N

is the state estimate at tk based on observations to ¢ less

* Bl X

those to tm’ i.e., on the batch of the last ¥ = % —Vm observations. The

same meaning applies to the error covarilance, Pk|(N)7
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observations. This number may be increased, but only at the expense of a

targer number of inverses of P and P

klx* Fxlnr k|(w)" _
It is possible to modify Jazwinski's algorithm in order to eliminate

one of the matrix inversions. By factoring out_Pk » equation ¢2,4.3) may.

|k
be written as :
- : -1 =1 ‘ o
Pk'(N) = - Pklk Pk|m] Pk ,k - , (’c.:‘.i.ﬁ)
Also, solving (2.4.9) for P;?k and substituting into (2.4.8) yields
= 7 3 __1 Pl . _ o . . L - !"J
T ket [kl(N) pk[m[mk|k mklm] 7 (n.d.1

Ex | () |
Thys the inversion of Pk|k has been eliminated, gnd (2.4.10) and (2.4.;1) are
the equations to be employeq. It_is, of course, necessary to obtain fk|k qnd
hence Pka is required.

The 1imited memory filter is implemented as a sequenfia] estimator.

Figure 2.5 diagrams the modified_procedure which uses (2.4.10) and (2.4.711).
The Kalman filter equations are run from & = 0 to &k = m = ¥, processing obser-
vations and obtaining estimates in the usual manner. This represents an
initfa1izafion phase. The values of Pmlm and Emlm are stored. The Kalman .
equations are then run from k = m to &k = m + %, also in the usual manner, and
the state transition matrix LI is obtained using @ N

,m k42, Tke2, ki1 Vi1, x

The predicted values, Pm+N[m and dre found using o and equations

/

N
Crett | m

(2.4.10) and (2.4.11) applied to obtain xm+N’(N) and Pm+Nj(N)' The process

is then repeated (except for the initialization phase) using the limited

memory filter outputs as the inputs for the next cycle (from m = 25 to m = 3v).
It appears from examination of the equations for finding Pk}(N)’

(2.4.9) or (2.4.11), that numerical problems could be encountered, particularly -

where short word length computers must be used. Equations (2.4.2) and



Given:
By, 2y
kmax"mT
k=0,m=DN
| & = k1 |
AP R Y P
P, =P _o 9T
kK~ Tk|k-17 7 Tk-1|k-1
= T = T -1
K =P, H(IF_H +F
e 3 =T, 4 Ky, - B 5
Crle T T P A - 8 Ey
Py, = (I -KH P,
Saque *
x
|
il]
o I

m = Bln = %m falm o,
o Frla = %k,m Frm CI)Tk,m
< Prlawy = 4 - Pk Pk|m~l)—l Pk
Yes Sl = Felx * Tl ewm Pk[mWI(§k|k'_ Selal
L .
AT AP Prl” Fx|

Figure 2.5 Modified Limited Memory Filter
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(2.4.70) require computation of the inverse of the difference of the inverses
of two matrices of similar values.

It is possible to offset this state of affairs. An alternative due
to Jazwinski (5, 258), reduces the number of P-matrix inversions to one by
workihg directly with the inverses only. Equation (1.3.9) from section 1.3
provides the necessary recursion relation. Dropping the m;subscripts fraom
. (1.3.8) onelobtains at time £ based on measurements to £ . |

1 - -1 -1 T -1 ' -, ,
P = P o H R o
klk-1 k-1 Tk-1lk-2 Ckoxe1 T B Hy (-4

For prediction only, the information term, B% Rl H, for time b is ignored.
Thus at o based on measurements to t

= ~1 _ T _~1 -1
Pplm = °

k.m Pmlm k,m (£.4,13)
This, of course, requires taking the inverse of ¢. If ¢ is symplectic*, its
inverse is readily obtained. Alternatively, instead of integrating ¢ = 4 &,

the inverse may be found by direct integration. $~1 is found as follows:

o1 o=
i T S S
81 = o7ty

'It_shoqu be apparent that all the previously presented algorithms

may be implemented such that z and 7 are obtained by integrating their

* An even—dimensioned matrix, ¢, is said to be symplectic if

o T & = J, where J = o I—]
‘ -0

Post-multiplying by ®_1 and pre-multiplying by J gives

ol gty
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appropriate differential equations. Similarly, differentié] equations may

be obtained for the prediction and update of 1. First,

Plpar
Ploeprli=y
pt o plpprl

and using equation (7.2.39) with @ = ¢, one obtains for the prediction,

Ehee) = - 7leey ace) - a%e) P Re) | (2.4.14)
The differential equation for updating pt may be found by applying a limiting'
process to (2.4.72) similar to that used in obtaining equation (1.2.39).

First,

P_I(T) = @—T(T, t) P_l(t) ¢"1(T, )+ HT(T) R_l(T) Hit)

-1

19 7e, t) + 8 Tee, £) At 4 ... ] P i

e S BA  TS  R e TR
Carrying out the indicated multiplication,

P = P - AT 2N at - PR ace) ¢ . e 0Ty moien B ()
Performing the 1imiting process requires subtracting P_l(t) from both sides,
and dividing by At. However, when taking the limit as Az - 0 the information
term becomes infinite implying that the observations are perfect (no observa-
tion noise). This is inconsistent with the postulated observation process,
hence we replace* R(t1) with B(t)/At. With this change, the Timiting process
is applied to obtain '

Fleey = -a%te) 27y - 27 ace) + BT0e) 5 l0e) Het) (2.4.15)

* Further rationale and a discussion of a white noise process as the

limit of a white noise sequence is given in (5, 83-84).
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with
1

..1 _ —
P 7(0) = Po

When the information term, &% g7 #, is added at discrete times, the approach

used is to predict to ¢ = ¢_ using (2.4.14) and then add the information

k
terms at Ty i.e.,
“x
-1 = 1, ) T -1 7
Pk|k—1 = - g- [P 708) Alt) + A7(t) P (H)] dt
k-1 '
7 N LR (".4.18)

ke = Pxlk-1 T HE B By

Reverting to the notation associated with the filter, there results

¢
x
P;f = = f UTitle) ace) + aTtn PR ) ae (2.4.17)
m i m m
m
t
Je—1 j+1
=L -1 T -1
Tl = 2 §_°f (2 70eft, ) Aare) + A%() P (t[t, 1 dt
J=m t.
b
T,, -1,. :
+ H (j+1) R “(j+1) H(Jfl)§
with
P_I(tm|0) =0 (2.4.18)

As before, it is not necessary to compute P"fk (although P is required)

Kk K|k
since equation (2.4.71) provides the 1imited memory estimate. Thus only one

.. . . R -1
P-matrix inversion is required: that of p -
ma 4 x| () k| (x)

the inverse of the state transition matrix is required, or else (2.4.17) and

to obtain P However,
(2.4.18) must be used. If ¢~% cannot be easily obtained, the advantage of
this approach is somewhat decreased. The implementation of the alternate

limited memory filter is diagramed in Figure 2.6.
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T = Srlr-2 T %k,x-1 Tk-1|k-2
F =P, =g _ P o
k= Tk|k-17 ",k k~1|k-1k,k-1
-1 = P, = 7T -1 '
= K =P B (HP_ H + R
Pm[(l) v k- ‘k X
Save N - -
xm.m xklk=xk +K(yk - ka)
P - (T - 7
| Pk|k (I -KE)P,

Figure 2.6

o

- -1
% k-1 Pr=1] (k-m)
T . -1
+H R CH

s

k,m xmlm
-7 -1 -1
B (I)kfm Ponlm q)klm
~ -1 ~ ~
= ekt Frlew Frln|x - St

“klewrr Prle x|

Alternate Limited Memory Filter
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2.5 Summary

In this chapter the non-adaptive error compensation algorithms of
age-weighting, gain-scaling, additive gain term, and limited memory filter-
1ng'have been presented. Some of the original algorithms have Been extended
to provide alternate forms, and relationships derived showing certafn
equivalences among the first three. |

Equations (2.7.1) give the basic age-weighting a]gorifhm as conceived
by Tarn and Zaborsky, with Fagin's form given by (2.1.1).

Schmidt's gain-scaling algorithm is given by equations (2.2.7) and
(2,2.3). The relationship between the scaling factor, b, and e (=HPH") is
given by (2.2.5). Modificétions of the algorithm are given by the alternate
equations for determining b, equations (2.2.11) and.(2.2.14).

The second filter design of Schmidt's adds a judiciously selected
term to the optimal gain, X. The resulting gain and covariance are given by
equations (2.2.2) and (2.3.5) or (2.3.6). The weighting factor, B, associated
with the additional gain term is shown to be related to e by equation ¢2.3.5),
and related to » by (2.3.7).

Jazwinski's 1imited memory filter is given by equations (2.4.8) and
(2.4.9) together with the Kalman filtering algorithm. A modification to the
basic Timited memory filter eliminates one of the three matrix inverses, and
is given by (2.4.10) and (2.4.11). An alternate form employs the inverse of
the error covariance directly, thereby reducing the number of matrix inverses
to one, and is particu1ér1y advantageous if the state.transition matrix is

Vsymp1ectic.
In the next chapter we turn our attention to adaptive techniques,

both optimal and suboptimal.



Chapter 3
ADAPTIVE METHODS

3.1 Estimating the State Noise Covariance

When mdde]ing errors are assumed to be répresented as purely random,
uncorrelated noise, it is often a problem to determine the appropriate value
of @, the state noise covariance. As indicated in section 1.5, there is a
prepdnderance of adaptive techniques which may be used to estimate the
appropriate noise covariances. Most of these, particularly Bayesian and
maximum 1ikelihood approaches, have been thorough1y invesfigated (25), (26),
(27), (28). 1In thié section an adaptive method due to Jazwinski is presented
which offers a reasonably simple and easily implemented scheme for adaptive]j
estimating the state noise covariance matrix. While the a]gorithﬁ is derived
using a maximum 1ike11hdod approach, an 1ntere§ting pfoperty is that in a
simplified form it bacomes jusf the coQariance matching technique,

Consider the following predicted residuals, called the innovations {23)

oo i ~ o T . :
r. =Y Hk x, Hk Tt v, E{uk} = 0, E{vk pj } = hk ij (3.1.1)

For simplicity, »_1is assumed to be restricted to the scalar case. Forming

k
the covariance of ?? one obtains

E{rk} =H, P, Hk + R, (5,1.82)

since E{ﬁk va} = 0. P 1is given by equation (1.2.17). It can be shown (23)
that the innovations given by (3.1.1) are uncorrelated, i.e.,

b:{Fk Fj} =0, >k,

74
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and that ¥£ is a Gaussian white noise sequence. Thus the joint probabiiity

density function of the innovations sequence r

kt1® Tr+2? 0 Tran s

p('rk+l: Pk_’_z_v sany Pk‘f‘N) = pfr’k‘l“l) - p(rk+2) '. .. ) (3.1.5)

: p(Pk+N
where

1
- . T = T -%
Py = ¢§E7[Hk+j Prots Tes * Rk+j]

. r . LT
+ SR
oap ; . [ ] ]$ , .
. ":-‘ rl '{' "
Brei Trrd Frog * Pisy (3.2

Suppose during operation of the filter equations (say, Algorithm I) that

t =t , and the predicted values P and €., are to be computed. For ¥
" predicted residuals the object is to find Qk[N (the state noise covariance at
t, based on ¥ innovations) such that (3.1.3) is maximized. In other words,

Qk|N is that value of @ which yields the most likely innovations sequence

Py’ ;%+2, cee ?%+N . Thus very large values of @ imply less likely

sequences of the Tnnovations.

Consider the maximization of (2.1.3) for the case of one residual.
First, the likelihood function is chosen as the joint density (3.1.4), and
its logarithm is taken to facilitate the maximization {since p and its

Togarithm are monotonic, extremizing In p extremizes p).

- - _ I.x — P
J = 1In plr,, ) = n(z2)" - In (H 7 Pryq o1+ B/

=2

. ( Tkt 1 )
= T
Frera Prrr Prer * Brea (8.2.5)

Taking the variation with respect to @ gives

- % 1 — + % X
(rEu’ + R (7 P 5T + R)? (3.1.6)

and assuming HG?HT > 0, the necessary condition &7 = 0 yields the equation

& =

$ H&FH
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PPyt - =g (3.1.7)

The sufficient condition for a maximum is 8%/ < g; hence,

7 2

¥ —i’ 2_ -PT <0
(HPH +R)® [HPH +R]?

or

2> %5 HPHE + 8] | (5.1.8)

which is met if (3.21.7) holds. Next, using (1.2.17),

T r
free1 v,k Qk]l Vvt fxer =
2 - H o P T _ R (3.1.9)

k1 k+1 k+l,k "k kt1,k Tk+l k+1
This equation is simply the equation for the covariance matching approach to

estimating g based on one residual, » In evaluating (3.17.9) the actual

k+1°
residual given by equation (3.7.1) is used. Further, for g to be non-negative

definite, the right hand side must be positive. Othenwise g is set to

k|1

zero. Unfortunately, AT is usually not invertable, hence, resort must be

made to a pseudo-inverse or some other technique. Defining, for convenience,
AZHT

the pseudo inverse of A (45, 82-89)

T
e A
AA
yields
Ar ~2 T T A
Qkflz_?[rk+1—H¢Pk® #4° - R} — (8.1.10)
AA

Equation (3.1.10) does not provide a unique solution for g. However, in the

special case where ¢ is a scalar, say ¢, one does obtain a unique solution:

> -F oP of BT - &
A AT

qk’l = (3,1.11)



77
Here again we require the right hand side to be non-negative. A disadvantage
is that one residual is hardly a sound statistical sample upon which to base
an estimate of ¢. A post hoe modification found to be effective is to emp1oy

the sanple mean of the square of ¥ predicted residuals,

=

[I

E s m=k + 1 - , C{3.1.12) .

in place of r This requires storing ¥ observations, which would not be

k 1’
s0 bad in itself, but the state estimate then ejther periodically lags the
observations by ¥ points, or else the last ¥ estimates'must be reprogessed.
Either way the resuit_is.the same, but the former is computationally morer
efficient since the state estimate is obtained-on1y once for each time point.
Another modification which is computationally easier to employ and
which does not seQer]y degrade the accuracy of the algorithm is to use the:

sample mean of the history of the last ¥ predicted residuals squared. In

this case,

=]~

'Y"'_"

N m—7j

N-1 o _ '
> r?* (3.1.13)
In this approach the filter equations are operated for the first m observa-
tions, storing the predicted residual at each time point, tk+l' For each

m < N, the sampTe mean,

m-
Z 72, m= 1, 8, v, N (3.1.14)

is fbrmed and used in the estimation of @. For each m > ¥ a new Squaréd
residual is added, and the oldest one is discarded. In this way a "moving
window" viewing the most recent ¥ squared residuals is maintained. This

modified approach is diagrammed in Figure 3.1.



78

Given:
Bos Pys
ko, N
max
k= 1, Y. =0
k= kel "34
AV4
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T T - HEy
Vo o<W Yes
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P o=¢p,

T
; T4

1
Kk=FaaPr + w7t

>
va

Figure 3.

1 Adaptive Estimation of ¢
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Note that both of the approaches reduce to the optimal case of one
predicted residual when ¥ = 7. lIn this case (3.1.12) and (3.1.13) are
identical.

Further modifications are possible to improve the-sihg1e residual
estiﬁator (5, 314); however, these tend to become rather complex. Also,
when more than one residua] is used in (3.1.3), the resulting set of equations
to be solved is nonlinear. In fact, they are basically the types'of eduations

found in other adaptive fi]ter{ng methods (26), (28).

3.2 Adaptive Estimation of Suboptimal Filter Parameters

Since the suboptimal methods of Chapter 2 effective1y.a1ter the
state error covariance, it is reasonable to assume that the adaptive algorithm
of section 3.1 can be applied to estimate the variﬁus suboptimal filter para-
meters. In each case, relating the parameters to the state noise covariance
prdvides the necessary Tink to allow the adaptive estimation of the
parameters.

For the data age-weightiﬁg technique, we can equate the standard
error covariance prediction equation (1.2.1?) to the age-weighted error

covariance prediction equation (with ¢ = 0):

- T T T .o
Pk+1 = ¢ Pk $° + T Qk F. =¢ g PO (3.5.1)

Using this relation in (3.1.7) gives

Tregr " U BB Y H - By, =0

or solving for the scalar, g,

2
r - K
8 = ~—————————— (S.S.S}

Hop o g

Again the post hoc modification is made and YN-given by (3.1.12) or (5.1.15)"

is utilized.
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FLES N P ] . fa.n.3)
e P ¢ H ‘_

Since s is required to be greater than or equal to 1, (3.2.3)‘may not be

emptoyed until

53
L)
k',L‘

v, 2B P& B +R | T (3.

To adaptively estimate the gaIn sca]1ng parameter Ly in sect1on 2.2,
the opt1ma] and subopt1ma1 ga1n express1ons are equated. |

S e S G SIS I LAl LI STl LR T PR

where P~ = & P & and g~

rg r. So]ving.for'H Q’"HT:one'obtains, after
premultiplying by #, _
bEP H(HP B +H Q" HL + R) = B(P” + Q%) B P a” + R)

po 8 ~nro A" _ (b=1) H P~ H(HPH+R) (2.6

[F - (b-1) H P~ H]

: Substituting‘into équationV(S.J.Q),

(b-1) B P~ B'(§ P~ B + R) _

) '\{'-HP‘H - R
R~ (b-1) HP" 1 N
which, solved for b, yields
(v, ~ B [# 0P o K +R] - ,
b = e > 71 I S - (3.2.7)

‘Hop o B
where tﬁe inequaiify on the_right is a condition on 5 established in section
2.2. A]sorit is‘notEd that equation (8.2.7) reguires yw'é R, a condition on
its use. | | - |

The modification (2.2.71) to the gain scaling technique may be formu-
Tated similarly to adaptively estimate its associated paraméter, o. Equating

(2.2.18) with the gain equation gives
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o = +9) Em e 8T g uT s pe (3.2.8)
#pr”ET .
which, when premuTtipTied by # and solved for # ¢~ # yields
P )
o T <%z (1- o) HP'H (38,0

(1 - o

Substituting into (3.1.9) and solving for o yields the simple equation,

a=1-FR S 5.2, 100
ar . , : . Lowse it

Conditions on « require that (2.2.10) produce an g > H K.
For the modification given by (2.2.14) the appropriate adaptive form
is similarly found. Equating the gains,
(r*+q) B BT rm @ B + ) =
(rw v+ prPHE /P BT (m e B+ )T (3.2.11)
premultip]ying'by # and solving for ¥ @~ 4™ gives
e nm p ut R+ H QB (P B 4 R) =
HP B P R+ B P H B B s g B 4R g n 0o i
Bo " R(1-p) =g P 0t + R

LT T v RH P A + R
HQ I =HT QI A =Sty

(As before, P* = ¢ P ¢ and ¢~ =T @ I7.) Substituting into (3.7.9) and

solving for g one obtains

(m P8 «r) _, op o 8 4R
v Tn

B=1-

with the conditions on 3 that ¢ 3_8_5-1 and hence

v, > B P& H + R
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Finally we note that for the additive gain term technique, a similar
procedure to determine the adaptive form yields results identical with
equation (3.2.12). This is true because equating gains and premultiplying
by ¥ gives # B F HT/H at = g r, and from then on the eqqations are jdentical.

The previously discussed suboptimal adaptive aigorithms are easijy
implemented in accordahce with Figures 3.2, 3.3, and 3.4; Either of_fhe
~ predicted residual sample means discussed in section-B.l'may bé usedi'hence

their computation is not shown in these figures.

3.3 Estimation of Auto-Correlated Model Errors

One of the most effective and useful ways to compensate for dynamic
modeling errors is to estimate such biases directly, 1nc1udingAthem as part
of the state vector. In general, model errors are not bure]y random, but have
time correlated components as well. Thus, by assuming sbme.functional form
for these components, their values may be estimated from observation point
to observation point.

There are several advantages in this approach. First, of course, is
that tﬁe estimation accuracy is improveq since model errors are compensated.
Second, insight into the nature of the mode]%ng errors is dbtained as an
additionai benefit, and through off-line data analysis, the form of the
dynamic model can be refined for future use. Third, since the state vector
is simply augmented, the estimatfon equations remain essentially unchanged
from the classical Kalman sequential form. Of course, lengthening the state
vector increases the computational load; however, this is not often a
detriment considering the state of present computer technology.

A further motivation for the adaptive estimation of model errors

should be noted. It is true that small bounded errors may be effectively
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compensated (as long as filter operation is within the range-of 1inearity
of the system dynamics) by using a "state noise" approach, i.e., simply
determining the g-matrix. However, for large or unbounded errors such
an approach is usually inpractica] if not impossible. Thus extracting as
much of the auto-correlated error as posefb]e from the model uncertainties
resu]ts‘in a smaT]er; purely rendom oomponent.-.Consequently, the associated
 state noise covariance matrix, g, is 1e§s, and since'this establishes a
minimum upon the state error covar1ance matr1x, a smaller g offers greater
'conf1dence in the state est1mate

The question concern1ng the type of functions to be used in mode11nq
the corre1ated errors is rea11y an open one. The answer depends upon the
application where two important con51derations are the filter operating time
and the sampling interval {more will be saio of this later). Approaches have
included the use of\simp]e power series in time, Tchebycheff polynomia]s, and
Fourier series. For our purposes, the term structure is introduced to mean
‘the functional form of tne correlated model errors.* Thus the structure may
~be Tinear or nonlinear according to the form of the model error approx1mat1ng
functions. Inc1denta1]y, the case of purely random errors is denoted here
as a null structure -- no time correlated components. Usually, the_assumed‘
error form is some linear combination of -a linear or nbn]fnear structure‘and
a8 null structure, i.e., of -a time corre]ated component and a purely random
component '

The incorporation of mode]_error structures into the.eetimatton-process

canh occur in basically one of two ekp]icit ways.:-Denotihg_the vector of -

A # Lainiotis (38) uses structure to mean the dlmen31ona11ty of the state
vector. Our def1n1tion may be seen to 1nc1ude this aspect. :
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error components by e, one can write a differential form,

e(t)

gle, a, t} + hit) ue(t)

aft) = 0 _ ' (3.3.1)
or an algebraic form, z(t) = G(eo, a, t) + H(t) w;(t) with the accompanying -
differential form

éo(t) =0

alt) =0 | (5.5.5!
where a is a parameter vector of constants, and 2, is the initial condition
vector, e(to), and W is state noise with covariance g(¢). ue(t) is zero
mean, uncorrelated noise with covariance* E{ue(t) ueT(s)} =G (%) G(t - s/,
Which form is used is of no particular importance in the subsequent discussion.
If a closed form solution, or even an approximate solution, is available for
the expected value of (3.3.2), an easier implementation may be possible since
the corresponding components of the state transition matrix are simply the
identity matrix of appropriate dimension. If no explicit solution of #{e}
is available, clearly (3.3.1) is to be used. Further, if g(e, a, ¢) is
nonlinear in e and g, an appropriate linearization must be made in order fo
use the estimation equations described in section 1.2.

Since the model errors are estimated as part of the state vector, each
time the estimate, &(¢), is obtained the model is updated. Thus if

5 = flx, e, t) 15 the subvector of the tomplete state vector time derivativé,

* §(t - s) is the Dirac delta. Although w is not differentiable in
e
the classical semnse, U, can be thought of as the "derivative" of w , and
e
hence as an uncorrelated random wvariable with infinite covariance. A

discussion of stochastic calculus is given in (5).
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é(t), for which the errors are to be inc]uded, then §\= fi&, &, t) represents
the updated portion of the model.

Note that in (3.3.17) or (3.3.2) the adaptive nature of the algorithm
lies in the fact that the constant parameter vecﬁor, a, is estimated as well.
Hence, if a reasonably accurate structure is assumed, subsequent estimation
provides accurate values of ¢. There is a danger in using the forms as
presented in (3.3.1) and (3.3.2). As the estimation process is carried out,
the a-vector converges to a constant value with the corresponding error co-
variance and hence gain terms approaching zero. Thus if the assumed structure
s not an accurate approximation over the filter operating period, the eventual
“hardening" of the structure as « takes on its constant value may, and usually
will, produce divergence of the estimate. Since one either does not really
know the error structure or else it is computationally too complex, it is
usually a good idea to model the g-vector with a null structure, i.e., as a
random parameter:

alt) =u_, Elu} =0, Elu (t) w (1)} = @ (t) 6(¢ - 1) (3.3.5)
a a a a a

This keeps the error covariance from vanishing, and the gain will remain at
some significant non-zero level such that the value of a(t) is changed to
allow the assumed structure to conform more accurately to the actual model
errors.

Before discussing some specific examples of the structures used in
the investigation, it will be advantageous to specifically define the error
vector, e (dimensioned r), and parameter vector, a (dimensioned s), with
regard to the previously mentioned forms. The differential approach is
selected so that |

elt)

I

gle, a, t) + h(t) u (t)

alt)

It
e
-

uaft) v

Ce
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We define the random variable

wT(t) = [ue(t)fua(ﬁ)]
with statistics

Blult) = 0, Blult) uT(s)} = R{t) 8t - g)
For the cases where the algebraic form is to be employed, ol t) is simply
included in the parameter vector, . The form (3.3.4) will be used as a
general reference in the sequel, with the appropriate modifications for
eo(t) being understood. Finally, the implementation is shown in Figures
1.7 and 1.2 with the modification that the state vector includes the compon-
ents ¢ and a3 i.e.;
x(t)
x(t) ig redefined to be | e(t) (3.3.5)
alt)

where the x(#) on the right is the original state vector.

A Simple Linear Structure. One of the simplest model error structures

is a Tinear function of time,

= ; .5.8)
el(t) co+clt {3.3.8
where
C‘O=uo
€17 %
Hence,
o . “o
a= .00, aw = | 0] =wt) = (3.3.7)
¢ %1

and
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CO .
e(t) = [T+t T1{,, - (3.3.8)

¢

Note that without the presence of state noise, H, ahd 1o the coefficient
terms, e, and e will take on nonvarying values, and the resulting "hardened"
Tinear structure will probably not represent the model errors very well
(unless, of course, the error actually s linear). The presence of the

state noise keéps the gain from vanishing, and‘on the average (3.5.5)_shou1d
approximate the model errors fairly well over a short interval.

Further discussion and applications of this model are given in

Chapters 4 and 5.

The Ornstein-Uhlenbeck Stochastic Process. Another simple structure
is that introduced by Ornstein and Uhlenbeck as a model to describe the
velocity of a particle undergoing a Brownian motion {40, 516). This model
has been used successfully by Ingram (32), Tapley and Ingram (41), and
Tapley and Hagar (34}, (35), in orbit determination studies. The Ornstein-
Uhlenbeck process obeys a simple linear, first order differential equation
(Langevin's equation) of the following type:

E(t) + o e(t) = u (t) (5.3.0)

where* o is a vector of constant parameiers and HE(LJ is Gaussian white noise.
The process is stationary, unbiased, and, by solution of (3.3.9), is expo-
nentially correlated in time. Further discussions of the properties of this
process are given in {5, 70-74) and (40, 516-524). For our purposes

appiication to adaptive model error compensation gives

* The notation [~ .] Implies a diagonal matrix whose elements are the

components of the vector, o.
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e(t) = e(t)

“bad e(t) + u ()

alt) = al(t) = u (t)
?Afe .

wlt) = |..° (3.3.10)
ua ' .

Further discussion and applications of this model are given in Chapters 4
and 5,

Harmonically Bound Motion. If a particle undergoing Brownian motion

is suddenly subjected to a displacenent-proportional force, the equation of
motion is simply that of a randomly forced harmonic oscillator (40, 524-525):

Bt} + Fald e(t) + DB eft) = u_(t) (3.3.11)

where o and B are constant parameter vectors, and ue(t) is Gaussian white

noise. This process is stationary, unbiased, and has autocorrelation properties
dependent upon the signs of [~o ] and [-8 ]. This equation has been employed
successfully as a model error compensation structure in lTow thrust space

vehicle navigation by Tapley and Hagar, {34) and (35). Application of this
structure to Qdaptive error compensation gives

p—

£(t) net)

elt)

|
§
1
—
&
b
=
=
o
—
1
-
™
i
4]
-
o+
Al
+
b
[tH]
—
<t
—

Ln(t)J

(o)

I
|

alt) = proe =y (t)
a

B(t) w, (t)

-----

u(t)l = *°50

(&) (3.3.12)

Further discussion and appiications of this model are given in Chaptefs 4

and 5.
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3.4 Linear Transformation of the Ornstein-Uhlenbeck Process

The model ervror forms presented in the Tast section were chosen in
an apparént]y arbitrary fashion. In this section, a unifying derivation is
presented from which éach of the previous models can be obtained under appro-
priate aséumptfons. The general result is a fepresentation shown to be
equivalent to an exponential multiplying a Fourier series.

Consider the Ornstein-uUhlenbeck process of equation (3.3.9). Let
e(tl be a (27 + 1)-vector related to the r-vector, e(t), by a constant

r x (20 + 1) matfix, ", whose values may be complex.

e(t) = C7 e(t) (5.4,1)
Further, let e(f) satisfy the differential equation (3.3.9). For the j-th
component of a(¢), | |

21+1
(t) = 3
eJ( ) éé% Cim T (t)
Zi+1 , to+t
= %éé cjm[em(t ) exp( -a t) + -£ expl “0 gl umfs) d g1
0
21+1

- :Zé c;m[Em(tO) exp ( o t) + w;] {3.4.8)
=

where the a are also allowed to be complex. Taking the expected value, the
second term in brackets vanishes. By absorbing the s(to) into the 2 , one
. Jm

then obtains

2I+1
" = * = - . "
E{ej(t)} z ej(t) géé ®im eap( ~a_ t) | (3.4.3)
with e, = e e (0). This is the general form of the transformation. With
im jm “m

Cim and o complex, the only restriction is that Qj*{t) is usually required
to be real in order to represent real model errors. If o is further

restricted to be of the form .
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o=, Lo oW, (a.4.4)
m J 7

wheve 7 = V-7, and if the limits on the summation are changed to run from

-2 to +1, (3.4.3) becomes

A
ej*(t) = exp( —-pj t) m=2_z cjm emp(r- imle %) (3.4.5)
With ¢, of the form

Jm

s .
o, =12
jo 2

s.m—ir',m

PR L S— (L)

cjm Z > m> 0

8., +1 v,
e, =—I= i s m<0
jm 2

then equation (3.4.5) can be written as
z .
ej*(t) = exp( - pjt) mgo {Sjm coe{m W, t) +_ij sinim W, )} (3.4.86)
where use has been made of the definitions
cos ¢ = [expli ¢) + exp(- 7 6J1/2, sin ¢ = [eap(? &) - exp(- < ¢)1/2¢
Thus under the foregoing restrictions, the process reduces to an exponential
multiplying a truncated Fourier series. Some special cases are now considered
which yield the models of section 3.3. |
Case 1. Let 71 =1, pj = ¢, and using the series expansion for sir and
aos through the first order, (3.4.8) becomes

e *(t) =g . +
J

1 le uy 7 (5.4.8)

which becomes the linear form (3.3.6} upon making the identifications
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Case 2. Let 7 =@, but retain the exponentié] form. Then (3.4.6)
gives
éj*(t) =850 exp( =P t) (3.4.8)
which is the solution to the differential equatidn
ej*(t) = —pj ej*(t)

This is obviously of the form of the mean of (3.3.3) with

o, =
brj DJ
Case 3. Let Z = 7, and set SjO = 0. Then (3.4.8) becomes
ej*(t) = exp( upj t)[sjl cns mj t + rjl sin mj ] (5.4.9)

which is the solution to the harmonic oscillator

BACE) + 2p. e (t) + (0.2 — w.2) e Mt) =0
J J J 3 J J

Making the identifications

o, = 2p, L= pLt - W,
bj Py BJ P; 7

the result is of the form of the mean of (3.5.11).

It should be apparent that more compliex structures can be obtained
easily from (3.4.6). For example, without restricting 840 to be zero, the
resulting form of (3.4.6) with Z = 1 satisfies the nonhomogeneous differential

equation,

S AE) + p. e t) + w.r ert) +wle. eapl -p. ) =0
?J J Py €, (t) ;e (t) S exp { o )

3.5 Structural Adaptation

With the general form (3.4.6) established as being capable of repre-
senting a number of different functions, it is possible, at least in theory,
to adapt structurally to a close approximation of the dynamic model errors.

By defining the vector of model errors and parameters,



p— ——y

el(b)
e .(t)
Fiis

plft)
alt) = .
pm(ﬁ)
mlftJ

-wm}t) |
and selecting m to be large enough (based on the degree of sophistication of
the a priosnd dynamic model), the filtering equations (Algorithms I or II,
Chapter 1) will produce values for the e, and W, which will result in an
approximation, e to the true structure of the model errors. The obvious
disadvantage is in the implementation: a large m produces a very significant
computational load. Thus the flexibility for structural adaptation, as

offered by a form such as (3.4.6), is partially offset by the need to exercise

parexic judgment in selecting a value of m.

3.6 A Sequential State Noise Covariance Estimator

In this section we return to the problem of estimating the state noise
covariance matrix. A new approach is taken, although the technique is simply
the formulation of a Kalman filter algorithm applied to a vector whose
elements are those of the state noise covariance matrix, ¢. With this ob-
jective in mind, once we have obtained the analogous state-observation andr
state dynamics linear relationships, the appropriate estimation equations can
be written down immediately. The resulting method will be shown to yield a
minimum variance estimate of the state noise covariance matrix elements,

subject to the additional restriction that @ be non-négative definite.



96

We begin by establishing the square of the kth predicted residual as
the reguired observation. From section 3.1, the predicted residual is

defined as

=3
]

k" Y T T

=Yy 7 M P k-1 Fres

i

Hk q)k,k-l mk—l * Hk Fk,k_l wk_l * 7-’k (3.6.1)

Continuing with the previous assumption that we are dealing with scalar

t

observations, we then form

— ~— 7 _ - 2 _ - T 3 o
E{rk r*k}—E{rk}—Hk Pk Hk + R, (3.6.2)
and define the ervror, 6, as
- 2 _ pin o2 =
B, = v, - Elr’} (3.6.5)
where £{8} = 0. Then
»2=H P HT+R +0 (3.6.4)
¥k Tk 'k k k k T
Further, assume that Hk is exactly known and define
-—~=—~2_ S
Dk P Rk {3.6,8)
v. =H D HL (3.6.6)
k k "k Tk TY
sg that
Dk = Vk + ek (3.6,.7).

, ,  nce
Now Vk is a function of Qk_l, sinc

—_— T T
Pk - ®k,k—1 Pk—l Qk,k—l * Fk,k~l Qk—l Fk,k-l

(3.6.8)
and it is @z that we are trying to estimate. If a Kalman filtering algo-

to T must

rithm is to be developed, then a linear equation relating &y

be obtained. To this end, the elements of @ are first placed in a vector, g,
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such that the elements are stored row-wise. Further, use .is made of the

fact that ¢ is symmetric so that only the upper triangular pbrtion is stored.

Thus ,

o
4 =y A o Yon 933 neg,m Do (5.6.9)

where m x m is the dimension of @, and Qg = Q(tk_l) is therefore the

m(mt1}/2 x 1 state vector to be estimated. Proceeding formally, consider a

Taylor series expansion for v, expanded about the value, 9j_q = 0> and
truncated to the linear term: -
BVk
v.la, ;) =V, + 5, T g {3.6.10)

0

Uym1™ Q-1

Vk(O) is simply (3.6.8) with @, = 0. In analogy with the linearized observa-

tion state equation (7.2.23), we use (3.6.10) and write (3.6.7) as

B, o=d aq._, +6 (3.6.11)
where
- . _ -2 = T -
Ak = Dk Vk(@) Pk Hk Pk Hk Rk
U170
. SVk
Y T o
k aqk-l (’3-8- 1&1‘)
Ang™?

The final task in developing the components of the observation equation is to
determine the elements of Jk. Since ?%, and hence,Vk, is Tinear in Qk~1’
equation (3.46,10) is exact; we write (3.6.10)

Vk(qk_l) = Vk(O) + 5Vk{0) (3.6.13)

The expansion of V, with respect to @, yields
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— T T
Wy = S By i) = Hy T et s T ks B

T T
LR T A (3.6.14)

B P . . . .
where 89, , =@, _, O%_; = 9,_; since the expansion is about the nominal value
Qﬁ_l = 0y Now the key factor in the development hinges on the ability to
express the elements of 4 ¢ B' in the form

J gt | (3.6.15)

where .7 is composed of the elements of ¥ and I'. To this end we digress for
a moment and prove the following:

Theorem 1. Given the matrices 4, B, ¢ and X of dimensions 7 x m,
m*xmn, nl xm®, and m x m respectively, then the 7 x n matrix, AX5, can be

written in the vector form, Cx, where mT = .mmm),

T30 T2 T am T2z FagFope
an mz-vector,rand ¢ = {ckp} with the P being given by

i3 T -1 St Wi~ 1 /] D lmod(G-1,m) + D)1, Irod(i-1,n) + 1]
where

[s1 = integer part of s

and
8
mod(s, t) = 5 - i-gﬁ, t
Proof. Writing AxB in expanded form results in the following
sequence:
%11 2 1m 12 00 T1m b1 ®in
AXE = . .
%11 2 Toi 0 o ml"'bmn
i T Tm m 7
%11 % im § Tis Pg § 15 %in
Hi m
A1 o g 5 xmj bjl E wmj bjn




r_m m m m
x,. . b
E all % rlj j1 g alJ g xlj jn
AXB = ' '
a, . , a x, ., b,
: i1 i7 " 51 : 71 g ij Jn-

m nt

g g Wi Pip @15 Uy Pap Fay P O Pop it g Prp T
; g + | a A b &
F oo Pop Sor  Gp Doy ®ap 7 Tz Prop “ap
o bmp X o= Jom g po=1,m

In vector form this becowes

mom mll

E g akl ip mij = (akl blp g bzp coe bmp ) x12
a

mm

Arranging the elements of (38.6.16) into a column vector and using (3.5.

results in
(m m y - 9 r -
g g SYRSTRTY G Prr ot A P *11
m m
. b, . .. :
E ; all jn xlj all bln alm bmn mlm
— 21
mm
L2oay; bey s Ay Pi s T P x
T J Z2m
m m x o
. b, . .
Z Z %13 jn mlj 11 bln “1m bmn
_-2' J b — o -
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(3.6.16}

(3.8.17)

17}

(3.6.18)
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Defining the e]ementé in the n? x m* matrix on the right as the elements of
{ completes the proof. |

In view of this theorem we also have the following:

Corollary. Given the conditions of the Theorem I above, let x and

AXB be symmetric. Then AXB may be placed ih the vector form (x where

T .
X = e - - 0 elements and
(xll . z, xmm) is a vector of mime1) /2

Cis an Inl(in+1)/8 x mim+1) /8 matrix with elements

dpq brs » forg=1r ,

ij :
apq brs + apr bgs s, forqg#r (3:6.19)

and where

1(i+t-1)/n + 1}

3
1l

V1 itu-1)/m + 7]

<
I

=
Il

[mod{j+u~1, m} + 11

i

s lmod(1+t-1, n} + 1]
t = ji/ml and u = lji/ml
The equations for the indeces of the terms in Theorem I and the corollary

follow by induction.

il

By i # 7. Then the redundant elements

£ . P . -
(z;, Im %220 Tom T30 Tt T’

Since ¥ is symmetric, T

of x may be eliminated so that xT

is m(m+1)/2. In ¢z the elements of ¢ corresponding to ;g for £ > 7, are
simply added to those corresponding to ;50 for < < 4. Further, the symmetry

of AXE yields

mom mom
Z Z “ki ¥ij Jp g g “pi Fij bjk

hence the duplicated rows of ¢ need not be included. As a resuit, the

elements of ¢ are given by (3.6.19).
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In Tight of this corollary, the validity of (3.6.15) is established.
A simple example will serve to illustrate the application. Consider a 2 x &
g-matrix, with #° as a 3-vector. Then
911 912
921 922

H= [kl h2 h3]

Y11 Y12
F=1vp1 Yoo
Y31 Y32
and
| Y11 Y12 5 s
HU = [hy by ol Y, You| = [; Y, § 2 y1.2] (3.6.20)
Y31 Y32

Making the identifications

a=8"=HT, x=¢

then application of the corollary to Theorem I yields

T_ 7
@ =q = qy,q;,49,)

[l () (o]

Note that in cases where s has only one row (as in this example), then we can

and

¢

11

write the equality

AT @I ' =g g (3.8.21)
This example corresponds to the case of scalar observations. In line with
our previous developments we continue with this assumption, although it is-

not a restriction.
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With the validity of (3.8.11) established and its elements determined, it
is important to consider‘the variance of Ek.l This is necessary as the inverse
of this variénce and some of its elements appear in the filter gaih.'
Defining '

B = 7..) +8 (3.6.02) .

and

k k 'k k
then
G =dJd Eg, .q. - YJ P+ J m8{G . 9.}
k k k=1 k-1 k k k=1 "k
+8{8, g,  Ya. T+ E{0 %) | (5.6.23)
kK tk-1" Tk k U

Letting

ur
[

e o
PRI
¢ =rg,_, 0

and

L7 LA 2 A nn.
.Zk = E{ek } & (3.0.:’;‘;‘)

then (3.6.23) becomes

= T B S BT+ T (3.6.25)

In the ordinary Kalman filter the observation error is assumed to be uncor-
related with the a paicri state estimate. Here this case is not generally
true; both 6 and g are functions of u, and this correlation is reflected in
¢. However, it is difficult at best to determine appropriate values for the
elements of ¢. Thus, in view of this lack of knowledge, a viable alternative
is simple to assume ¢ = ¢ so that (3.6.24) becomes

G=d 3 J° 7T
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This expression is directly analogous to the observation residual variance of
the ordinary Kalman filter:

We now lack only a “"dynamics" relationship governing the prediction of
q. Assume that Ty is linearly related to Uy by an appropriate state
transition matrix, Ve, s B0

k-2

Teey = (3.6.26)

Ye-1,k-2 Tx-2
IT the process generating the elements of state noise vector, u, is wide-sense
stationary, then the state noise covariance matrix is constant. Making this

assumption we have

U1 T gz
and hence ¥ is the identity matrix, 7. Such an assumption may not be overly
restrictive since usually the dynamic model governing x can be determined such
that u is at least bounded over the interval of interest, b, S b2t
We are now in a position to write down the estimation equations.

Making use of the definitions (3.6.24) and empioying the assumption ¢ = 0, the

appropriate relationships may be written directly as

S = Spm1? 1 = -3 (3.6.27a)
M =5 750 5 5T+ 1) (3.6.27b)
S I AL T X U
g T gy + M0 = Jp a5 (3.8.87¢a)
S =T -M J)E(r-J " uY) e r ¥ (3.6.27d)
X - T Ml P x Yk xx Yy S.0.4
where M, is the filter gain, and
" N A T,
5, = b{(qk_l - qk_l)(qk_l - qk—l) } (3.6.28)

There are additional restrictions which must be set forth before the algorithm

may be used. Recall that @ must be non-negative definite. However, it is
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not unlikely fhat (5.6.27c) may produce an estimate § which does not conform
to this requirement, particularly during initial (transient) operation of
the filter. In order to accommodate the non-negative definite constraint

we call upon the properties of the covariance, §. First, recall that for
the diagonal elements, 95

g.,, >0 (3.6.88)

ii —

Also, the 50 T # ., may be written in terms of the correlation coefficient,

qij = pij vqii qjj (3.6.30)
whare
-1 <9 < 7

Now since (3.6.29) and‘(S.S.BOJ are inherent properties of a covariance
matrix, and since any covariance matrix must be non-negative definite,
(8.6.23) and (3.6.30) may be used to insure the restriction on g is met.

Thus if any diagonal element is estimated to be negative, it is then set

to zero. Correspondingly the appropriate gain element is recomputed to agree
with this modification:

0 Q.+ m(h - J q)

1]

or

m= -q. /(b -J g (3.6.31)

where m is the corresponding element of M, . After performing this test, if
o M A~ o
|qul z qg.. q.. I’S.B.So/

then set

: ~ ~ » P ~ m
= max| ff ;5 355 » min| f/qii Q55+ 954 1} (3.6.33)

955 ij
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where the superscript, m, means the value computed by (3.6.25), and where
the max and min functions mean take the respective maximum or minimum values
of the arguments. Further, thelcorresponding gain term is modified
as

m = (@ij - agj)/fﬁ -Jq) (3.8.34)
The foregoing restrictions do‘not destroy the unbiased property of the
estimate, i.e., {4} = y. Further, since the Kalman filter normaliy produces
a minimum variance estimate, the restrictions on ¢ result in a constrained
minimum variance estimate. Of course, this is true only within the validity
of the assumption £{g0} = 0.

No mention has yet been made as to the choice of the residual error
variance, 7. Since it is somewhat difficult to select this value, it may be
estimated also. One way is to usela method proposed by Tapley and Born (43).
The technique is simple and straightforward, and is the average of the a

posteriond residuals given by the following recursive equation:

0 —_ __-z_ .'Z._._ ~ 2 ‘2?,
Y= (1= T+ (& -J 4 ) (5.6.35)

An initial value which may be used is T, = Ebz, since if ¢ g =0,

A2 = 9% = 1

Since (3.6.35) is the average of all the residuals up through £ S k
becomes targer, each new residual has less effect in determining T, - This is
acceptable if 8 is wide-sense stationary, in which case 7 is constant. If
this is not the case, then a modification which offsets this effect is to

use only the last ¥ residuals. Thus for k < N, equation (3.6.35) is employed.

At each tk the kth residual is saved. Then for % » N use

—- i__ ) 2‘l_ - 2 oo e
N A R R N (3.6.36)

k© Tk-1 k -1

instead of (3.6.35}, and continue to save the most current ¥ residuals.
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The implementation of the sequential state noise covariance estimation
algorithm is diagrammed in Figure 3.5.

Although we ﬁave been concerned here with estimating only the elements
of @, 1t should be obvious that the algorithm may be extended to include fhe
simultaneous estimation of the observation error variance 7. In this case,
an augmented state vector, z, is defired as

# = (q rR)T
Then A and 7 are redefined as

=7y _ ?_HT’: J oz + 0

|

and

of {2 1) {(3.6.37)

The/corresponding estimation equations are of the same fofm, although 7 is

repﬁaced by »*, and z replaces 4.

1

It was indicated earlier that the assumption of scalar observations
is not a restriction. Consider the case where HI' is 7 x m. Then ArorteT
is 7 x . Correspondingly,

= o " H  rmr o1 0T 4 s 0 CE A

is also Z x I, Since the terms of (3.6.38) are symmetric, the corallary to
Theorem I applies, and we can write

4.2 _ HH p P (I}T HT) +J g+ ER £ AQ (3.8.88)

where each of the terms is 7 (7 + 1)/2 x 7. For instance, if 7 = 2,

7 = (712 77, 7,2)7 with similar arrangements for #(2ere ), *p, and g,

Thus ,

Vll

AH O P O HY) = AV(0) = V.,

I/,2‘2
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L) o~
Bos Fus Gy

Sos Too My k__

B k=1

Use ordinary

Kalman filter

or state T =0 3
for sta x =0 z
£ th -
estimates with @ Pk -3 Pk ®T
obtained from § , B B
Tro=Yp - Homg

s - i
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Ak = rk H Pk H R
T T ko1t Ty = Gy
7 7
= [ J z J
My =8, d /T 5 0 )

Yes

For each L # J

i3 qii

| £
' .. = sign(Q ajj g

ij

)

- 1 Lk — g 5 2
- Tk =(I- % J Tk—l + ?((A Jk qk‘-l)
R S A NS L o S A ST
kT k=17 W Pk T Yk g RS R L

Figure 3.5 State Noise Covariance Sequential Estimator
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and

R

I
=

and

g (&.6.40)

il
@

The rest of the algorithm is obtained in a straightforward manner, similar to
that for Algorithm I (Chapter 1), subject to the non-negative definite
restrictions for §. |

Finally we note that the estimator developed above suffers certain
disadvantages. One of the more serious is the assumption of a specific model
for 4. This may be reasonable for a portion of the filter operating range.
However, if the state noise process, u, changes its behavior drastically after
steady state conditions have been essentially reached, the filter has no
power to adapt td the corresponding new value of ¢. Recall that this is due
to the fact that the associated error covariance practically vanishes, and,
similarly, so does the corresponding gain. This situation is exactly analogous
to the original dynamic model error problem, and is the most serious disadvan-
tage of this g-estimator. However, this being the case, we can apply any of
the previously developed compensation algorithms, inctuding another state
noise covariance sequential estimator.

For example, an obvious method is to include a state noise fourth

moment matrix*, w. In this way the prediction of = given by (3.8.27a) is

* By using another filter to estimate ¥, this approach could be continued
ad tnfinitum, becoming computationally very burdensome very quickly., The
author's opinion is that anything much more complex than (3.6.47) is seldom
practical.
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modified to

S =5 LW ' (3.6.41)

3.7 Summary

This chapter has.presented a selection of adaptive optimal and sub-
optimal algorithms to compensate for model errors. In all cases the emphasis
has been on simplicity and generality. Jazwinski's algorithm for estimating
the state nofse covariance matrix has been shown to be optimal based on a
single predicted residual. By using the mean of a sample of squared predicted
residuals, an element of smoothing is introduced, but also at the expense of
introducing suboptimality. |

The basis of Jazwinski's algorithm has also been shown to be applicable
to a number of the algorithms of Chapter 2, allowing the suboptimal parameters
to be adaptively determined.

In section 3.3 the approach (different from all the previous ones) of
attempting to estimate the actual model errors has been taken. This édaptive
method has been shown to requife the assumption of a particular functional
form to represent the structure of the model error. Several examples have
been presented, and a general functional form developed to allow a measure
of structural adaptation. This has been in the form of a generalized
Ornstein-Uhlenbeck process, capable bf structurally aﬁproximatihg (having
the approximate functional form of) a number of different functions.

A Kalman filtering algorithm for sequentially estimating the state
noise covariance matrix, @, has been developed in section 3.6. The algorithm
is somewhat more complex than those previously presented, but has been shown
to provide a minimum variance estimate of ¢, subject to the constraint that

¢ be non-negative definite.



Chapter 4
APPLICATIONS: RENDEZVOUS MISSION

4.1 Introduction

In this chapter'the algorithms presented in the foregoing chapters
are apb]ied.to fhe rendezvous problem formu?ated in Section 1.4.< The interest
here is to gain familiarity with the operation_ofrthe varioqs estimation
algorithms. Through the-deye]opment of explicit equation;. and plots of their
behavior, qualitative 1nsight‘may be gained into the performance of the

algorithms.

4.2 Age-Weighting of Data

The standard age-weighting algorithm is easily applied to the rendez-
vous problem discussed in Section 1.4. Modifying the estimation equations
(1.4.6) to conform to the age-weighting algorithm, equations (2.7.1), result

in the following sequence:

Pr = Pyz
P = P
K =D [P. +Rr/s17?
k kY k
Pp =P+ Kly - o]
P, = sl2 - X1 P (4.2.1)

where it is tacitly assumed that R is constant. Starting with (¢ ) = 7,

the gain and covariance recursions above may be applied to arrive at the

110
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steady state gain and'tovariance'va1ues*. Thus,

k=1
B, =P
K. =P.0B. + Rt
L
N
- (PO + R/g)

"o

e — T e o ]
il 1 [(PO + !?/SJ:!"’ ZO

RPO

- (’PO + R/s)

P F
F =p = ___9_
2 1 (PO + R/g)

=
il

— - -]
3 » o
12{P2 + RBAs]

PO ;’{/(PO + Ii’/s)
PO ¥t
R+ /sy * e

P
o R
PO/[PO +:§-‘—+32:]

[ Po/s+R/32 ] P R

0 I
PO{J + 1/8) + E/g2 (PO + R/s)

I

i

Py B/IP,(1 + 1/8) + R/8%]

* The gain and covariance update equations could be used to solve
directly for the stéady state conditions. However, using the recursion
equations to compute values recursively and.then inductively determining the
‘steady state conditions provide instght into the operation of the algorithm.
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P R
P o-p = g :
3 2 PO(J + 1/8) + F/s2

g -1
K3 = P3[P3 + hH/g]
F, }?/[PO(I + 1/2) + E/s%]
= P B0 (T 4 1/8) + R/8°] + R/s
bl T\
_ fo _ )
- Z’O + PO(.T/S + 1/87) + R/s3 !‘0{’_'! + 1/ 8 4+ et e 0l
- T g L3
P, = PO R/[PO(I + 1/s + 1/8°) + R/s7]

Continuing the recursion, one obtains for k = m:

P

K = g
m m-1 F n
2, Z 1/s” + R/a
J=0
Po R
P = — ) (4.2.2)
P Z 1/.9] + R/sm
4] =

The summation in K and P is simply a geometric series with sum, as m - o,

™ e o 1
?;b /57 = 77 (4.28.3)

Thus, as m + =, Km and Pm become

P
0 5 - 1
Ko = - = & (4.2.4)
O(s - J.‘)
where Iim R/g" = 0, since ¢ > 7, and
m—)ﬂo
- 1 ’
p =£ R (4.2.5)
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For very large k, the estimate of 5, including the first order model error

effects, is found to be approximately

- o g ~ 1 , . s
& 3] - ; L. - +
P et T3 (poy sinh Yfk ey cosh YE, - 0, vk)
or
é oL —j PRGN (o v onint vl E o oonlovi b o r3.0.6)
k : N rk o {)O\ ai-F Y % p” ISR N } ]\ f}\ PEPEIPSE SR

Using (1.4.25), the corresponding error is given approximately by the
following expression

- o L 4 N e .;Z,:_S'I g4 0 2
Pr * % (poy ainh YE, * oy aosh Ytk) - =0 v (d.2.7)

& L4

For large s, the effect of the unbounded error term (first term on the right)
is small. Correspondingly, the random effects are more predominant, and in
the limit as ¢ + = the error is due strictly to measurement noise. Because
the time correlated term completely dominates the noise term when % is large,
continued filter operation is possible only when s is very Targe. In fact,
best performance results here when = is very large since then all the
information is derived from the most current observations. As expected

(section 2.1) the error covariance in this case becomes, by (4.2.5), R.

4.3 Schmidt Suboptimal Filter: Gain Scaling

In section 2.2 it was indicated that the use of a constant value of
b can lead to certain difficulties. This is exemplified here when one
attempts to find the steady state gain and error variance. The error co-

variance recursion is used to solve for the steady state variance directly:

_ _
AR
m

P =1[1- (8 - b2)
m .
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In steady state, P =F, =P

=)

= - _p2y B ___
P=1[1-1(-0%) 717
= —_ - 2 ——— .
0= -(2b b)PiH (4.3.8)

This implies either P =0orb=2, Thus for I <5 < 2, it simply takes
Tonger for the steady state condition of P = ¢ (and hence ¥ = ¢) to be reached.
For b =2, P = Py In this case, the estimate eventually diverges.

For the method where (2.2.12) and (S.B.JSJIare empioyed, the steady
state variance, P_, is found not to vanish, since in this case I_ is found to

be

K =no (4.3.10)

As a - 1, only the most recent observations contribute information. Con-
sequently, £_ -~ I and B -+ R.

The corresponding estimate and error for large % are determined as

s
C)

- £ ) . <
Pr = P * % (QOY sinh YE, * °p cosh Yt - Py *+ vk)
£, ¢ > ) .
B TR I ‘ ' ' S 170
(1 -7 0+ % (o Y sink vE, + Py cosh YL, + v ) (4.3, 17,

and

S _ & : : ; _ &L _E
Py = {1 % )(pov ginh Ytk + e, eosh Ytk) {7 7 J pk. T Vs s 15

When b is determined by equation (2.2.174), the steady state gain and variance
are also seen not to disappear. Using the covariance recursion, one finds

for the steady state,
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2b_b2=2+§§_1_gg§_%i
-1- B8
P=1{1-(1-p2% r2/p?) ?§“§“§7] P
=[P~ (1- ggzﬁz ) (ppi 7]
e

Solving for P, one finds that
P=RER (405,33

For the steady state gain,

- _ hE - Ry P __
K =bk=1(1+R 7 J A

which yields, on substituting for p from (4.3.13),

2B
R+ 1

k' = pK = (4.3, 14)

When B = 0, one has the optimal Kalman filter, and the steady state values
of gain and variance are zero. For § =7, P =k and K~ = 7, as expected.
For very large k, the estimate of o, including the first order model

error effects, is found to be approximately

L 2B . . . _
I 5t 7 [poy sinh Ytk + p cosh ytk - Py vk]

or

1 -B s
bk 7T +8P? R+ 1

[pOY sinh Ytk + 00 cosh Ytk + vk} (d4.3,15)

The corresponding error is found to be approximately
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T 1-8 . . 1-B- 2B
Pr = T g IPgY sinh vt + p, cosh vt ] - T % "8+ 1 %

{4.3.16)
Again the results are as expected. For B8 = ¢, the error consists of only the
time varying term. For R = 7, the error is due s01eTy to the measurement

nojse.

4.4 Schmidt Suboptimal Filter: Additive Gain Term

Using the same procedures as in section 4.3 for b = 1 + R 4/1,
identical results are obtained for the steady gain and variance. Using

equation (2.3.8),

_ BZRE

F=(1- L } EF+ TR

_(P+B* R R

B P +R
or

F=RR {4.4.1)
For the gain,

M= P . B R

F+F P+ F

or using P = B &,

B+ 1 (4.4.2)
It 1s‘noted that the difference between the two algorithms, discussed in
section 2.3, does not appear here. In other words, for the gain scaling
suboptimal term, the variance term divides out, yielding the identical

results in gain and variance.
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4.5 Limited Memory Filter

To apply the Timited memory filter to the rendezvous problem, assume
we have available 5m|m and Pl and it is desired to obtain the 1imited
memory estimate over the set of (& - m) observations. The necessary quanti-

ties required by equations (2.4.8) and (2.4.9) are given below.

Tl T Prle T Pxfr-1 T Ex i) k-1
-:\ k
= Qm|m + J;%:_’(_J Kj I”jlj_l

where the predicted residual is

ray. L= sinh Yt, + p_ cosh YE. ~ p.1. . + D, (4.58.1)
7l3-1 7 PoY Yoy 7 P GOBR NS = Py T Y
and the gain at tj s
X, = T m+ 1 <g <k (4.5.2)
7 (G-m) Pm!m+}? —-¢ 2
Similarly,
r R
o m|m _
Pklk T (k-m) P + R (4.5.5)
m|m
and
= ] 4
Pklm Pm]m (4.5,4)
r jance based on observations from to £ , may b
Pk[(k—m)’ the error covariance bas servations t Lt may be

found directly from equations (2£.4.8) or (2.4.10) or may be computed recur-

sively by (2.4.12). The computation using equation (2.4.9} yields

X _ ol -1 -1
ik](k-ﬂn) - J:Ek,k Pk!m ]
B [(?c—m) Pm(m + R i 7 ]_1
B P F P
m|m m|m
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or

Py ey = B/ (kem) | (4.5.5)

It is noted in passing that for k-m = 7, 1i.6., one observation, the cor-

responding error covariance is as expected; P = R.

k| k-m
Using equation r2.4.8) the limited memory estimate is found.

~
L)

- .'R (k-m) Pmlm rA s i\ pmlm Pj|j—1 pmlm l
> -

Pl frr = ’
k| (k=m) = Tk=m) Prlm & JEeL (Gem) Byt nlm )

- {(k~m}P + R k r.,y.
-— - —1
- (?fm) i(kgm) Prlm ¥ Iﬂ%jlm 2 ('-m)JzI:J n Ré
g=mt1 Y m|m
ar

~ a ' K r, .,
- _ - h‘.\ j|J-l
pk[(k“m) - pm[m * [Pmlm * (k—m)] j—-%—!—l (F~m) Pm]m + R (4.5.6)

Thus, the outputs of (4.5.5) and (4.5.6) are the 1imited memory error co-
variance and estimate. Note that when k-m = 7, the estimate depends only

upon the most recent observation. In this case (4.5.8) gives

Prle1) 7 Pr-2]k-1* 7

k|k-1

= oy 3 2.5.7)
PoY ginh Ytk * 0, cosh Ytk U (d.6.7)

1

4.6 Numerical Results

The foregoing sections have considered the application of some of the
error compensation methods to the rendezvous problem. In particular, various
closed form axpressions for the range~fate estimate, error, and steady-state
gain and covariance equations were derived. Such expressions help provide
analytical insight into the filter structures. However, the performance of

the algorithms can be seen best, perhaps, through numerical simulations.
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Thus, in this section numerical results are obtained for each of the
compensation algorithms previously presented.
To carry out the simulations, nominal parameter values defining the
dynamic model were selected as shown in Table 4.1. The model error parameter,

Ys is defined by equation (7.4.20) as

v? = Téiﬁg-sing £
¥
&

and reflects the gravitational parameter, u, the target vehicle radial distance,
s and the Tline-of-sight angle (above the Tocal horizontal). For Earth orbit,
L o= 398603.2 km®*/sec?. Thus, using the value of y given in the table, values

of e are determined for various Qa]ues of |».]. For example, an orbifa]
altitude of 160 km {|r,| = 6538.165 km) corresponds to e = 4.96°; at 240 km,

e =5.1°,

Parameter Value
Initial range, p, 10 km
Initial range rate, 50 ~1 m/sec
Initial range rate errop, 50 g m
A priond variance, P, 10 (m/sec)?
Observation error variance, R .01 (m/sec)?
Observation interval, At 10 sec
Model error parameter, y L18 x 1073 (sec)”!

Table 4.1 Nominal Simulation Parameters
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In performing the simulations, the nominal or assumed model, as

before, is 5k The true dynamics are computed according to the

= Pr-1
linearized model, equation (7.4.22). The true range rate observations are
computed by adding a random number, distributed* Nro? EF), to the true range
rate from (7.4.22). The observation deviation is then found by (2.4.23),
and the filtering equations of the various alqorithms are applied to obtain
the gain, estimate and updated state error variance. In all cases investi-
gated, the true initial error is zero, as seen from Table 4.1. Also, to

provide a common basis for evaluation, the error sequence is jdentical in all

cases.

Standard Minimum Variance Estimates. To provide some standards of

reference, Figure 4.1 shows the behavior of the ordinary minimum variance
algorithm in the presence of model error with no model error compensation
techniques employed. Also shown is the case with perfect modelling. The
ordinate axis represehts the estimate error in meters, with the abscissa
measuring time in seconds. Three curves are shown. The solid Tine represents
the actual estimate error, ;k, where the model error (7.4,25) is present. The
dotted Tine gives the estimate error for no modelling error. The dashed line
represents the computed error standard deviation (s.d.), o, = wﬁz'. Note

that this curve is the same for both cases, regardless of the presence or
absence of model errors, since the estimation algorithms are identical.

For the incorrect model, the rapid rate at which the estimate of the

range rate diverges is rather astonishing. Thus at typical Earth orbit

* The notation N(0, R) means that a random number is sampled from a
normal distribution of zero mean and variance, 5. In the simulations,
normally distributed random numbers were calculated using the Central Limit
Theorem (46, 98-99), Further, the same sequence of random numbers was
repeated from run to run.
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altitudes, relatively small line-of-sight angles -- on the order of 5° --
produce a dramatic divergence of the range rate estimate. On the other hand,
for the exact model (1.4.52}) the power of the Kalman Tilter is reflected by
the dotted curve: after 1500 seconds the error has practically disappeared.
Thus these two curves can be seen to bound the performance of any of the

compensation algorithms investigated for this problem.

Commonality of the Algorithms. Because of the fact we are dealing

with a single stéte variable, it is possible to relate most of the suboptimal
filter parameters to obtain equivalent steady stage filter performance. In
other words, through appropriate expressions relating the filter parameters
to each other, it is possible to obtain a value for each parameter which will
produce equivalent steady state performance for each algorithm. (Exceptions,
which are treated sebarate1y, are the ordinary [b = constant] gain scaling
algorithm and the limited memory filter.)

Consider the steady state relations for the age-weighting, modified
gain scaling, and additive gain term algorithms. These are given by (4.2.57,

(4.5.13), and (4.3.17), or (4.4.1) respectively as

p =8-14p
ce 5
P:a}?

P =8FR

{Recall that this last equation is the same for the modified gain scaling of
equation (2.2.74) and for the additive gain term.) For equivalent steady
state performance each of the above expressions must be equal to any other,
thus providing the necessary relationships relating the filter parameters.

Therefore,
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L g~ 1
2. a- = (4.6.1)

8

For the case where the state neise covariance is employed, the steady state
expression given by (1.4.32), may be equated to the corresponding expressions

containing the suboptimal filter parameters. Thus,

p - —L2 A+ 4/f B (1.4.32)

* 1+ V1 + 4/f + 8/f

where f = ¢/R, may be included in (4.8.17) so that

B _g=1_ 1+ Y1+ 4/F (4.6.2)
Z- o ¥ 14+ VT + 3/F + 3/1

Using these equations, a table of values may be constructed. Table 4.2 gives

such appropriate values which yield the equivalent filter performance. The

table was constructed by selecting various values of B and then solving for

the corresponding values of a, s, and §.

B o g & Eg
0 0 1.0 a. {
.10 L1818 1.111 LOI1IR IR
.20 L3533 1,280 La500R LSRR
.80 L4615 1.488 LINBEH TN
, 40 LH714 1.8867 CBEETR AR
. 50 .BE667 2.000 LS000R LOR
.80 L7800 2,500 LaoooR LBR
.70 . 8235 3.333 1. 8330 . PR
.80 . 8888 a8, 000 3. 800K . BR
.90 L9474 10.00 8. 100R LOR
.99 L9950 100.0 Q801N LOOR
1.00 1.000 @ w A

Table 4.2 Filter Parameter Values for
Equivalent Steady State Performance
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Figures 4.2a through 4.2e illustrate the numerical equivalence in
terms of filter performance. The curves were actually generated using the
additive gain term algorithm for g8 = .2, .3, .6, .9, and 7.0, respectively.
However, steady state conditions, and hence equivalent performance, are
quickly reached. These curves therefore illustrate essentially the same
performance for each of the algorithms. As in Figure 4.1, the solid line
represents the actual estimate error, Ek. The dashed 1lines represent plus
and minus values of the computed standard deviation, o, -

In examining the figures one finds that the maximum and minimum error
values increase with increasing values of the filter parameters. In the
extreme (Figure 4.2e), the estimate follows the observations, and the errors
are greatest in absolute value. Based on the sample of 384 points, 71.61%
of the estimates are within the lo value* of .1 meter, determined from the
error covariance computed by the filter. In Figure 4.2a the absolute value
of the maximum and minimum errors are smallest. Here, 64.06% of the 384
points are within the 1o value of .03163. However, the model error appears
to be showing itself in the form of a bias; the majority of the error values
lie above the expected value of zero. In Figure 4.2b the error does not
exhibit such a bias, thus suggesting parameter values somewhere between those
for Figures 4.2a and 4.2b (e.g., .1 < 8 < .3) -- at least for the time inverval
of 3840 seconds. However, regardless of the value selected, as long as'B < 1,
divergence can be expected to occur eventually. This follows from the
unboundedness of the error, equation (4.3.20).

Because the steady state variance associated with the ordinary gain

scaling (b = constant) is zero, the equivalence developed above cannot be

* A sghort discussion of an interpretation of o in light of normal
ergodic processes is given in Appendix D.



~

LOHES

- I
< AT T
-.036Ji 4.20 B = .1

I P 1
< T e
_ p 4.2¢ B = .86
AL
< T

=
3
T

125

5 (m/sec)
fn

-. 1507

8

bos
T

S
}
W

l

5 (m/zea)
L)

3
b
ey

1

{(t = 3840 secs)

~

. L)
——— Hange Rate Error, p

Standard Peviation, o

Figure 4.2 Equivalent Filter Performances

for B, o, s, and @



126
obtained. Thus this algorithm results in a completely different, and not
very effective, filter performance. This is seen in Figure 4.3, which shows
the estimate errors for the gain scaling algorithm using values of 5 = 1.3,
1.6, and 1.9, respectively. Clearly the performance is unacceptable; diver-
gence occurs soon in all cases. The values b = 1.3 and » = 1.6 are seen to
have Tittle effect on the estimation performance. Only when & becomes close
to 2 does the algorithm have an effect in delaying the divergence. Even then,
the variance eventually becomes zero, although it simply takes longer. Recall
from equation 4.3.122) that » = 2 prevents any change in the variance, and

hence P = P . For this problem the ordinary gain scaling is obviously not

0
acceptable.

Adaptive Estimation of State Noise Covariance and Suboptimal Parameters.,

Numerical simulations were performed for each of the adaptive forms for esti-
mating the state noise covariance and suboptimal parameteré, as presented in
sections 3.1 and 3.2. In these simulations, the values of vy given by (3.7.13)
and (3.1.14) were used (the sample mean of the square of the previous ¥
predicted residuals. Initially, (3.7.74) was used to "build up" the set of

¥ residuals. Subsequently (3.1.13) was used to compute Yy Use of eguation
(3.1.12) was not investigated due to the inherent disadvantage of either having
the estimate lag the observations, or having to reprocess or smooth the

estimates.

In computing the various parameters, the following equations were

employed:
9 = max [0., Y, - P, - ] (4.6, 5:)
s, = max [1., (v, - #}/7] | (d.6.30)
bk = max [1., (YN - }?)(Pk + R)/Pk] (4.8, 5z)
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a, = max [(YN = R) /Yy Pk/(Pk + R)] . ' S & (;.s.sd)

B,

1. - (Pk + R)/max [I’Pk + R), YN] | (4.6, 3e)

These equations yield appropriate values for the parameters according to the
va]ues-ef Yy They also automat1cal]y 1ncorporate the attendant limits on the
‘parameter values, which is the reason for the presence of the max funct1on

In carrying out the simulation, some particularly interesting, if not
surprising, results were obtained. Threé different valnes of ¥ were used in'
computing Yy namely ¥ = 7, 10, and 20. 1In each case, the'a1gorithms exhibited
very similar behavior,-with the exception of the_ordtnary gain eca1ing algo-
rithm. In fact, it was found that the performances of Jazwtnski's édaptive
g-estimator yielded results identical with the adaptive age-weighting é]go-
rithm. Further, identical results were also obtained with the adapttve forms
of the two modified gain sca]ing algorithms and the edditive gain'term approach
of Schmidt. However, some small differences were noted between these tno sets
of performances. Thetsimu1atton results are shown for each N_in,Figures 4.4,
4.5, and 4.6, respective1y. | |

Figure 4.4a shows the estimate error and £19 curves for Jazw1nsk1 S
Q-estimator and adaptive age-weighting with ¥ = 1. Here, 64.84% of the 384
estimates are within the computed 7o of the true value. -Very simi]ar_estimate
error behavtor is shown in Fignre 4.4b for the modified gein scaling algo-
rithms and additive gain term.technique. ‘Although the performances are nearly
the same for the two sets of plots, in this latter case only 59.35% of the
384 estimates are within o of the true value. On this besis the adaptive
forms of the state noise covariance and age-weighting algorithms appear to
offer greater confidence in their associated estimates. This suggestion
seems to be further substantiated by Figures 4.5a and 4.5b. Here the same

type of information is plotted as in Figures 4.4, but now ¥ = 10. The
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percentages of the 384 points lying within +7g of the mean are 55.99% and
50.78% respectively for Figures 4.5a and 4.5b. The same trend is present

for the case where & = 20, Figdres 4.6a and b. Here the respectivekpercentagés
are 59.9% and 51.30%. Thus the implication 15 that the former. algorithms

offer greater.confidence, as measured byrthe'computed covariance.

Another notable characteristic is presént in.each of ngures 4.5a and
4.5h. Close examination‘suggests the appearanﬁe of the model error biaé, N
since the majority of the error values appear above the‘expected zero value
on both sets of plots. This implies that when more residuals are used in
forming Yy thg bias errors have more opportunity to affect the estimate.
Increasing the residual sample size to N =20 yields the plots shown in
Figures 4.6 which confirm this suspicion. In retrospect this should nqt be
sﬁrprising;.as N+ = the adaptive a]QOrithhé ceése to operate,-aﬁd the biés
errors dominate producing divergence of the estimate.

For each of the values of # = 1, 10, 20, the adaptive form of the
ordinary gain scaling algorithm yields the results plotted in Figures 4.4c,
4.5¢, and 4.6¢. Clearly thése results are unacceptable. Initially the error
variance is large; hence the adaptive algorithm obtainé no information from |
the residua1s since Yy is generally small and hehce (4.6.3c) produces bk = 7.
As the proce#s continues, Y fendS to increase; but the sensitivity of the |
algorithm is simply ﬁot‘sufficient to cdntro] the divergence of the estimate.
~ There appeérs to be a simple explanation for this. For the adaptive form of
each algorithm considér the sensitivity of the gain to changes in the residual
sample, Yy This is determined by using the appropriate membek of equations
(4.6.3) in forming the corresponding dain, and then taking the partial deriva-
tive with respect to Yy In all but the case of the ordinary gain scaling

algorithm, the partial derivative is
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For the ordinary gain scaTing,

X

B—__:

N

Q2

(4.6.,8)

g L

From these equations the reason for the very d1fferent behav1or should be
apparent. First, note ‘that when the residuals are very small the sens1t1v1ty
given by (4.6.4) is very high. This is desirable since the gain values then
respond quickly to changes in YN; However, for gain scaling, a similar
sensitivity requires that 7 be very 5ma11. This is exactly the type of
behavior displayed in Figure 4.6c. Only when the error variance has decreased
significantly does the adaptive feature beg1n to operate Thus based upon
the indicated performance, the ordinary gain sca]ing a]gorithm will be dis-
missed from further consideretion as a viable filtering algorithm.

No discussion has been given yet concerning the c0mpdted values of
the state noise variance or suboptimal fi]ter parameeers. An obvious approach
is simply to "shotgun" the reader with a set of some 21 graphs of estimation
curves and then pick through the data a "pellet” at a time. A preferred
approach, and the one fo]]owed here, is. to offer a representat1ve sample and
then to note certain trends determined from examination of this and previous
data. In this manner we hope to aveid "blowing the reader's mind" * and
still provide a further meashre of insight into the behavior and relationships
of the algorithms. -

We proceed by offering, as the representative sample, plots of the
state noise standard deviation, <« = Vg, given in Figures 4.7a through ¢.

Figure 4.7a gives the vd]ues of k determined from Jazwinski's @-estimator

* This obvious pun could not be resisted.
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based upon single residuals (N_: 7 far YN). During the'initfa] phase of
operation, while the state error covariance is reasonably large, few non-
zero values of ¢ are computed. After 800 seconds, the error covariance has
decreased, and there is a high frequency of non-zero estimates. In Figure
4.7b, the values of « are shown based upon a 10-residual sample size (¥ = 1o
for Yy ). Here both the frequency and magnitude of computed values of « are
Tess than for the single residual case. Figure 4.7c continueslthe trend.

In all cases the estimated values of @ clearly result in the desired increases
of the Io curves of Figures 4.4a, 4.5a, and 4.6a. Note, however, that as

the residual sample size, &, fncreases, the state estimate bias error becomes
more prominent. As pointed out earlier, as # - =, we eventually have no
@-estimates being produced, and thus the state estimate diverges.

For the suboptimal parameters, excluding ordinary gain scaling as
stated earlier, similar results havelbeen consistently obtained. 0f. course,
the Timiting values are different; however, the parameter estimates show the
same random "spike" behavior as those for k. Similarly, the frequency and
magnitude of the values decrease with increasing #, resu1ting in eventual
dominance of the bfas error in the state estimate. Further evidence of
similar performance for the sUboptimal parameter adapfive estimation is
given by the similarities of the error curves in Figures_4.4¥4.6. If signifi-
cant differences existed in the adaptivekcomputation, thése would also be
manifested as significant differences in the various error énd 1o curves. On
this basis one may conclude -- and the estimated parameter data bear this
out -- that no fundamental differences exist in the performance of
Jazwinski's adaptive state noise covariance estimator and the remaining
adapfive suboptimal parameter aTgorithms for this scq]ar'example. (This

last qualification is important and will be discussed in section 4.7.)
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Limited Memory Filter. Figures 4.8a through 4.8c show the estimate

error for Jazwinski's limited memory filter. The fiqures correspond to the
values of the "memory ]engtﬁ," i.e., the number of observations processed
between applications of the limited memory updates. Thus memory lengths of
1, 10, and 20 observations are reflected in the performance given by Figures
4.8a, b, and ¢, respectively.

In Figure 4.8a the filter follows the obsérvations. Comparison with
Figure 4.2e clearly indicates idéntica] behavior, as expected, with the
corresponding steady state covariance, P =R

For ¥ = 170 the estimate error is plotted in Figure 4.8b. In this case
the bias error appéars as an excess of points above the time axis. However,
toward the end of the interval, the central tendency is back towérd zero mean.
To investigate this further, the case of a 20-observation memory was run. The
results appear in Figure 4.8c. As expected, the bias effects are even more |
pronounced. Indeed, if the memory size is made as long as thercomp1ete ob-
servation period, the performance 15 simply that obtained for no error
compensation; i.e., the estimate error grows without bound.

| In both 4.8b and c the typical behavior of the covariance may be

noted. This is expressed as the saw~tooth form of the.izu curves. FEach
peak corresponds to an increase in the variance produced by the limited
memory updated. After each update, the variance begins decreasing in accord-
ance with the operation of the ordinary Kafman filter equations. The width
of each of the séw-tooth‘pulses is therefore directly proportional to the
memory length. | .‘ |

The accuracies obtained with the 1imited memory filter are generally

on the order of those obtained by the adaptive forms of the suboptimal
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algorithms. waever, based on the numerical results, the memory length must
be smaller than the residual sample size used in fhe adaptive algorithms.

For this scalar problem the 1imited.memory filter requires no more
computational effort than the other adaptive forms. 1In vector problems
involving many state elements, the computatioha] load pecomes quite severé
due to the required matrix inverses. For thi§ reason the 11miféd memory

filter loses its attractiveness for use in more complex problems.

sequential Estimation of the State Noise Covariance. We turn now to

the performance of the sequential estimator for ¢. Initial runs of 3840
seconds were made using a priond values for the error variance, 5 = £{(?%},
the residual error variance, 7 = £{82}, and the initial value of @ as follows:

1.0 (m/gec)"

n
=1
1

Tg = Alz = (yl = 51)2

0. (misec)?

&£
I
Il

The performance was é]ight]yAbetter than for Jazwinski's adaptive g~estimator,
although the bias error was apparent. The estimated values of ¢ took some
time to "settle." This appeared to occur near the end of the interval. To
investigate this further, the interval was doubled to 7680 seconds; the
results are shown in Figures 4.9a and b, which show the estimate errors for

p and estimates of ¢ respectively. Also shown are the corresponding o-error
Io curves. The Ic value for the 6'error appears to have a mean of approxi-
mately .04 m/sec, with 70.05% of the error being within iu. The corresponding
value of k = /7 is around .015 m/sec. At the final tfme, the confidence in
the estimate of ¢ is reflected by a 7o value of V3 = .027 {w/sec)?. The

data indicated that all the g-estimates Tie under the /5 curve, suggesting a

decrease in the a pnian& S. Though not immediately obvious, close examination
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of the /o-curve and the w-curve reveals a slight trend to increasing values.
This is not surprising since we know the actual errof iS‘incréasing, (fhe
bias error is obvious here in Figure 4.9a), and hence the Q—Fi]ter is éimp]y
trying to adapt to this. Further, one can expect that diVerqence of ¢ will
eventua1ly occur as the @-filter saturates, and no new rnformat1on is added
Recall that th1§ is due to the assumption that the error is a stationary
random process, 1;e., constant @. An obv10us_remedy is to include a process
(state) noise variance term in the &-estimator, as suggegted by equatibn
(5.6.41), Another a1terhaﬁive is to impfove the assumed model so that the
assumption of constant Q.is more accurate. Thfs approaph is considered in
the discussion on estimating model errors, o

A notable aspect of‘the sequential ¢-filter performance is the fact
that the Is curve has been found not‘to decreaée as rapidly as for the ordinary
Kalman filter. Consideration of the constraint on the estimate, i.e., g,
reminds one that the filter is minimum variance only fn the d,poatcn(omé sénse.
Thus the variance cannot'decrease any wore rapidly due to this constraint on
%#. Further, large values of 7 result in slow decrease in &.. This behavior
happens to hold an advantage. Since the attendant filter does not decreaser'
as rapidly, the filter operates for a longer period of time before saturating.
On the other hand, the estimates take longer to "settle down." Some idea of
the effect of different a prioal values of the error variance, 5, may he
gained from Figures 4.10 and 1.11. Figures 4.10a and b show the p error
performance and estimates of @ for g, :‘S(to) ;-.Ol(m/sec)5. The performance
of the range rate and ¢ estimates appears to be about the same as those in
Figures 4.9a and_b, although now 64.2% of the error is within 1o, Sihi1ar1y,

at the final time the computed standard deviation in the estimate of ¢ is

VS = .026(m/sec)?.
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Figures 4.11a and b show the o error and g estimates for S, =
10 *(m/sec)". Here the range rate estimate is not very gbod. A large bias
appears early, although this decreases as larger g-estimates are obtained
(Figure 4.11b}. SthT, only 30.68% of the estimates 1ie under the 1o curve.
At the end of the simu1ation. 5= 933 % zougﬁmfschin,

A number of runs were made to inVestigate,the effects of different
a priond values of 7. The results indicated that the a pacend value has 1ftt1e
effect upon both the estimates of ' and (). Using the'algorithm of équatioh
(5.8.55), the estimated values of 7 decreased monotbnica]ly from 21.94 (m/sec}“
to .2571 (m/sec)”. Presumably if more points were taken, this would decrease
even further. The modification, given by eguation (3.8.38) of using a limited
batch of A-residuals was not investigated for this problem, but is treated in

the next chapter.

Estimation of Model Errors. Suppose the assumption of a constant

closure rate is modified so as to be a linear function of time. We thus assume
the model error may be approximated by equation (3.3.5). If we further assume
ey = 0 and ¢ = él, then the range rate model becomes

Qk = p + e At

Cp T Gy T ‘ (4.6.6)

where e is unknown, and is to be estimated along with bk. The term »w”™ is a
process noise term added to e and represeﬁts fﬁndamenta] uncertainties in
knowledge of ¢. Its statistics are E{w”} = ¢ and E{w”?} = ¢. There are now
two state variables, and the problem may be cast in the canonica] fofm as

el T oA A 0 _ - .
T = [c} - [0 1:] [G] * [wf] - ®k,k—1 Tpe1 F Vg
k : k-1 k-1

(4.6.7)
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In this recast fqrm; the approach is to use the standard minihum variance
filter with the corresponding H-matrix being

H-11 0] R (4.6.8
In Tight of this extended form, it is important to raise the qhéstion of
_ observabilfty. Consider the information matrix given by -equation (1.~.01)

with 7 = 1.

k : :
T T . -1 ‘ c e
= ‘ J.8.00)
Tk,l ?:E—I @i,k €, K, " H, @ : ‘

36

1z z

Substituting for %, #, and R,

k [ 1 0} ,’1] (1o0) [1 0] [J (t. -t )]
T - 1 k
k1= 2 fieey 1] (o 0 1

1=1 ik _ . R

i [ i (t~t,) } '
100k ) , '  (4.8.10)

Forming the quadratic form using an arbitrary 2-vector, 5, yields .

il

k SR
. _ - 2 ) 4
2 T, 3= 100k 1?2—:1 (2, + 2,(6, - t,)1* (2.6.71)

which is clearly positive for all non-zero values of z and k > 7. Thus our
assumed dynamics represent a completely observable system. Note that this
would not be true were we interested only in e, since the observations do
not relate directly to . Rather, information about ¢ is obtained only
through its correlation with p. Thus in estimating ¢ it is the c¢ross-
correlation, s {normalized by the variances sz and‘R) which comprises the
gajn, K for e,

K, = %c”(%z + R) ' (4.;.;2) |

We note in passing that the system is also completely controllable

sfnce
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(t -t )*  (t -¢.)
Akg:qz k 3 k1]>0
! i=1 (¢ -%.) 1
k i

which follows fromr(i.s.ZSJ.

In carrying out the simulations fok this formu]ation? the a priond
values of ¢ = 0 and E{3*} = 1.0(m/sec?)? are used. Initial results with
@ = E{ww”} = 0 are shown in Figure 4.12a. The performance is such that as
the error covariance decreases, so does the gain, and hence the constant o
tends to a particular value. However, the true error actﬁal1y changes in a
non-linear manner so the bias error begins to dominate after about 800 seconds 
(Only 26.82% of the 384‘pqints are within 10 of the expected value.) This,
of course, is due to the fact that ¢ = 0. Now examining the iz-curve suggests
that a reasonable 10 steady-state value of .02 m/sec for o might be acceptable.
The value of @ which yields this Zo-value may be found usinglthe.covariance
prediction and update equations. For the prediction,

P=opr o +¢

[};11 glz] [3 M::l[p“ p;z][] 0] I:O 0]

= + . -
= = - (4.6.15)
P21 Paz o 1 Pa1 Poo At 1 I q (j.b.i '

Carrying out the multipiication yields

or

P11 =piy + 8p1a At + pos AE? (4.8, 140
P12 = P1» + pPa2 At (4.8.1:0)
522 = P22 ¥+ q (.6, 1)

where the symmetry of P is recognized as py» = p21.

For the update equation,
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512]
P22

(1-k1) Pra }

-k, ;_712 + 522

Employing the definition of X, and again recognizing the symmetry of 7,

: 3—9—11 o 3_511
Pll—‘-’( -m) P11 = ————

pit + R ' 7 : (4.6‘.16‘51)_

P+ R | . (4.6.126b)

(d.6.16c)

511 + R
‘ Eli _ RE‘}ZA
Piz = (I - ZT_“__") Piz = T
P+ R
;-'@_122 -
P2a = = T + D22
Pii1 + K

Solving (4.6, 18a) for 7, gives

P11 = p11 /(B - Pii)

For steady state conditions, the Py

(4.6.17)

in (4.6.14) equal the Py in (4.86.16).

Substituting (4.¢.14c) into (4.6.16c) and solving for p,, yields

P12 = Vgl p1y + R)

(4.6,18)

Substituting this into (4.6.16b) gives the equation for p;, as

FERE v‘q{/;11 + 1) /(511 + I

{4.8.19)

Next equate (4.¢.746) and (7.6.18), and substitute (4.6..19) for py: to obtain

1 Z
Par = Rz qlp1r + R} (1 -

[_}'11 + K

i ) (<,

Lae)

W
(s
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Finally, use (4.6.17), r4.6.19J, and (4.6.20) to solve (4.6.14a) for g. The

result is

Pllu : -
_ (4.8.257)

AL*(R - py (2R - p)?

Using the suggested steady state value of o = .02 m/séc, theh‘pll.:7§2 =
4 «x 10" "{m/sec)? and, approximately,
g = .7 % 70_q(m)ncé2)2_

The values of A and (& are taken from Table 4.1.

Using this value of 4 along with the other initial and a puictc values
(e = 0 and #{3*} = 1.0 m*/ecc*) produces the results shown in Figure 4.12b.
Here definite improvement is achieved as expected. 74.74% of the 384 points
are within the steady state 7o value of .0209 m/sec as opposed to the 26.82%
associated with Figure 4.12a. Notable characteristics are the apparent
oscillations of the error, and the fact that the majority of points 1lie above
the time axis. Oscillatory error behavior is known to be charéqteristic of
optimal approximations, e.g., {48, ?5); and here optimality is clearly an
objective. The latter characteristic implies, as in earlier runs, that the
bias error is becoming apparent. An obvious suggestion is to increase g.
The results for g = .1 x 107 %(m/sec?)? are shown in Figure 4.12c. This
arbitrary increase in g prodUces a steady state Io vaiue of .053 m/sec, and
bounds 83.33% of the error points. In light of these results, it appears that

”

i
FaN |

the optimum ¢ is probably between .1 x 107 %(m/sec?)? and .1 x 10 S(m/ses?
To pursue the question of optimum @, and also to investigate the
sequential ¢ estimation algorithm further, the idea of estimating ¢ arises.
However, in applying the sequential algorithm strictly to the formulation
given by (4.g.7) the observability problem is brought out agéin, this time

with regard to estimating ¢. In writing the information matrix, @,
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corresponding to the estimation of ¢ one finds that ™ - ¢. Because of the
way the problem is formulated, the equation for r? doés not contain o expli-
citly. Thus in farming TQ, the measuremenf'mapping term is zero for zall time,
and hence so is T2, In other words, the term corresponding to # in equation
(1.3.51) ié zero. Hence, the ¢ corresponding to < 5 not observable.

Consider the formulation of the origihé] problem as a differential
equation. In vector form

=4 x4+ B u

R e

where the identifications are obvious. The term, w, is a process noise term

or

with the statistics #{u} = 0 and E{u?} = g §(t-1). Now.the solution to this

differential form is cleariy not (4.4.7), but rather

- ) _ * t ‘ o
p 1 (-t ey /k (-t )e
= + _ udr
5 4] 1 e g 1 I P o<
k ) k l tk_"’l (‘..'-6.{40)

Taking the approach of equation (7.2.30), where « is assumed constant over

it ., tk_l], yields

k
= A i
T Qk,k—l et Fk,k_l Yy (4.8.84)
where
2
AT At 0
T = 20w =
kK. k-1 2 k-1
A a

0 AT Uy . , (d.8,88)

It is important to note that one form, (4.6.7) or (4.6,24), is not necessarily
more correct than the other. In both cases uncertainty has been introduced

arnbitranily; hence the measure of correctness rests in the choice of the
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model, and u]timate1y in the performance of the estimation process. For our
purposes here (4,6.24) is indeed necessary since this appears to be the only
way in which we can "get a handle” on 4.

To bring this approach to fruition, use (4.8.24) to form the error

covariance prediction equation as

P=0pP @ +T 9T

where
2 i . Ll +3
s |5t é%— 0 0l s o é% AL
I'gl™ = = = g i “
2 23 :
o ae lo BT ae BT pp2 (4.8.7¢)

Now in forming the measuremeht equation to be used in the @ estimation we

obtain

i

(p2 oo gt N, = (AT Q T g7 6),

or

= At | - : -
= y [ g0
/_\k 7 qk+ [Bk T PR

Correspondingly, the information, TQ, is no 1onger Zero,

0 kv AtS

= > . : { 7, M8
k.1 i o {4.6,28)

T
and we have complete observability with respect to the K%.

While {4.8.27) is certainly a viable approach, it involves an approxi-
mation, namely that » is constant over the interval [t,. 7, _,]- This
assumption can be dispensed with by forming FQTT in accerdance with equation
(1.82.3bal). Thus,l

{,‘k

rort :.i[f @(tk, g) Bl{s) q S(s-v) B (1) @T(tk, r} dr de
f_

k~-1
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Carrying out the first integration,

. Yy 7 Aat1T0 0 [ 70 ] '
rgr f de
) o 1)lo ¢ lar 2

If

k-1
ar
at® o ar?
rgrt = g ? ’ (4.6.50)

The difference between (4.6.29) and (4.6.26) is approximate1y the factor, At.

Forming the measurement equation we have

k

+ _ A#? e e
A T A, t 8, (£.6.30)

and similarly the information

o _ kAt

> ‘ iLod
k.1 g ad (d.¢.57)

T

insures complete observability. Owing simply to the more rigorous approach.
(4.6.30) will be used for the estimation of q.

Using this alternate formulation, Figures 4.13 through 4.15 show the
estimation performance for the three a prioai values, S, = 107%, 1071°, and
10”2 (m/sec?)®, respectively. The results indicate increasing estimation
accuracy of the range rate with decreasing «a prionce values of 8. In particu-
lar, for 5, = 107 ®(m/sec?)*, 74.22% of the range rate error values are less
than the 7o curve {Figures4.13a). From Figure 4.13b fhe final value of 4 is
approximately 4.5 x 10 ®(m/sec®)”. In Figure 4.14a, S, = 107 '°(m7sca®)",
78.78% of the range rate error points are less than 1o, and the maximum value
of g (Figure 4.14b) 1is approximately 2. x 10 ®(m/zec?)?. For S, = 107132,

80.1% of the range rate errors are within Iv of the expected zero mean (Figure

4.15a). The maximum g-value is approximately 7.7 x 170" '%(m/sec?®)® (Figure
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4.15a). While the actual magnitudes of the g-estimates become smaller as
the a priendi § is decreased, within each case the sequence of g values
increases. This, of course, results in increasing the error variance of p.
As before, this may be attributed to the error growth, for while the error
has been reduced, it has not been eliminated.

Note that for 5, = 10" ®(m/sec?)", cdmparatively large values of ¢
are obtained. This is due to the fact that initially large values of the
gain are computed thu; tending to make the values of = "follow" the observa-
tions. The result is that the erratic behavior of ¢ from one observation to
the next appears to be quite random. The sequential ¢-estimator sees this
and produces correspondingly large values of @. As smaller values of .7
are employed, this effect becomes less, thus allowing the values of = to
become more stable. Figures 4.14a and 4.15a show this to some extent. The
estimates of @ do not increase quite as rapidiy; their magnitudes are less,
and the values tend to reach their maximums sooner.

From these results it is apparent that various a prtox{ values of &
have definite effects upon the values of the @-estimates. However, through

reasonably careful selection of Sy practical filter operation can be realized.

4.7 Summary and Conclusions

In this chapter the salient aspects of the estimation technigues
found in Chapters 2 and 3 have been investigated, and the algorithms applied
to the rendezvous problem formulated in Chapter 1. Explicit closed form
expressions have been obtained, in whole or in part, for the age-weighting,
ordinary and modified gain sga]ing, additive gain term, and limited memory
filter algorithms. For these as well as all the other algorithms, numerical

results have been obtained.
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Certéin equivalences were shown to exist in both the adaplive and
non-adaptive forms of the age-weighting, modified gain scaling, additive yain
term, and state noise covariance algorithms.  While these, as well as the
limited memory algorithm, were fdund to be acceptable estimators, the ordinary
gain scaling technique (b = constant) was shown to be unacceptable, in both
its adaptive and non-adaptive form.

The adaptive techniques, based on Jazwinski's maximum likelihood method
as well as the Sequenfia1 ¢-estimator, are seen to be a step closer to accurate
estimation. The techniques based on Jazwinski's approach have the particular
advantages of being both simple and completely adaptive. The primary dis-
advantage is the fact that usually smoothing must be introduced in the form
of a residual sample, thus destroying the optimality of the method.

The Kalman filter for sequentially estimating the state noise co-
variance appears to give slightly better performance than Jazwinski's adaptive
estimator. Within the stated assumptions, the method is a constrained minimum
variance estimator. However, the technigue is more complex to implement.
Further, the assumption of {30} = ¢ destroys the optima]ity. If, in fact,

# does not represent a stafionahy process, then the assumption of constant
introduces modeling error, thus requiring more accurate modeling or some
technique to prevent saturation of the ¢-filter.

The estimation of modeling errors has been shown to be particularly
useful in that this approach attempts, in some way, to improve the dynamic
model. Invariably the chosen structure iJs not'sufficiently exact to allow
the filter to operate to saturation. Thus, some model error compensation
technique must still be employed, e.q., state noise covariance. In this
regard, the sequential state noise covariance estimator has been shown to be

effective.
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The rendezvous problem investigated here involves a single state
variabTe, and as such, the information and comparisons presented must be
accepted in this light. When the algorithms are extended to state vectors
of more than one variable, some of the algorithms lose their similarities.
In particular, the modified gain scaling, additive gain.term, and state noise

covariance‘a]gorithms in both their adaptive and non-adaptive forms produce

results which are generally different from one another. Further. Jazwinski's
adaptive g-estimator requires a pseudo-inverse in computing a J~matrix. This
disadvantage is not suffered by the sequential g-estimator. The limited MENg Ty
filter is, in an a posteniond sense, an optimal estimator. However. applied

to the vector case, it requires considerable numerical computation. To in-
vestigate these algorithms as applied to the vector case of more than one
variable is an undertaking of considerably greater scope. Further, the
insight provided by the closed-form expressions for many of the algorithms
would be difficult, if not impractical, to obtain because of the greater
problem complexity.

Based in general upon the results obtained in this chapter, the model
error estimation technique and the sequential state noise covariance estimator
have been selected for application to a multi-element state vector probiem.
The choice of this approach is due to the inherent potential for effective
application to more complex problems. As indicated in Chapter 1, the problem
is the orbit determination of a Tow thrust space vehicle which is subject to

thrusting errors. This investigation is carried out in the next chapter.



Chapter 5

APPLICATIONS: LOW THRUST VEHICLE
ORBIT DETERMINATION

5.1 Introduction

This chapter is concerned with the problem of estimating the state
of a continuously thrusting, solar electric propulsion {SEP) space vehicle.
The probiem is compounded by the fact that the pﬁopu1sion system is subject
~to certain mechanization and control erroré. While errors afise from various
other sources (49}, for the SEP vehicle, the primary errors are due to
anomalies in the propulsion system. Our aim Here is to fnvestigate the
practicality of estimating not only the vehicle state, but the correéponding
thrust acceleration errors as well.

A number of investigators have considered 1ow thrust SEP missions.
In (50}, Rourke and Jordan investigated guidance and navigation approaches
for two SEP interplanetary missions, although model errors were not estimated.
Russell and Curkendall {36) obtained effective results by using piecewise
constant functions to model acceleration errors; Tapley and Hagar investi-
gated the estimation of acceleration errors (34) as weT] as inertial measuring
unit errors (35) for an SEP vehicle. These approaches employed Kafman filter-
ing utilizing the differential equation for ». Errors were successfully
modeled as first and second order Gauss-Markov processes, although Earth
rotational dynamics were not considered. Carpenter and Pitkin (37) investi-.
gated orbit determination for an SEP vehicle. Here the total thrust

acceleration was assumed to be unknown, but approximated as the solution

159



160
t0 a set of uncoupled linear differential equations. However, the approach
followed a Teast squares linearized simultaneous solution with no statistical
measures being employed. |

As indicated in the previous chapter, our apprqach here is to assume
a structure for the acceleration errors. Then, employing the selected filter-
ing equations, the parameters as;ociated with the assumed model error structure,
as well as the position and velocity of the vehicle are to be estimated.

In the following sectfons, the specific dynamics and estimation
equations are developed. Five different model structures are investigated
as to their ability to repreSént the acceleration errors. Each is developed
separately, and numerical simdlations are carried out to obtain comparative
estimation performance. Corresponding to each df-these structures, purely
random ervors are also assumed to be present. Associated covafiances are

either input, or estimated using the sequential ¢-estimator.

5.2 Problem Description

In the problem considered, the motion of the solar electric spacecraft
is assumed to be influenced by random errors in the thrust acceleration vector.
The nominal SEP mission simulation is initiated at escape from the Earth's
spheré of influence and terminates with a fiyby of the asteroid Eros. En-
counter with Eros occurs at a distance of 1.45 astronomical units (a.u.),
152 days after heiiocentric injection.

If the only central force attfaction considered is the sun, the
equations of motion for the SEP spacecraft'are

po= v
1:? =——H pay : (o.0,0 1)

2]
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where, as shown in Figure 5.1, r is a 3-vector of heliocentric position com-
ponents, ¥, ¥, Z; v is a 3-vector of heliocentric velocity components I, 7,

Z3 |p| is the magnitude of »; and u is the gravitational parameter of the sﬁn;

T 1is the heliocentric thrust acceleration vector coﬁposed of the design thrust

acce1eration, 7+, as well as thrust acceleration errors, m(z), from a number

of sources (beam voltage aﬁd current, grid wafpage, deadband control errors,
X

etc.). The heliocentric components of 7, [T Ty TZ]T, may be expressed in

a vehicle centered, orbit frame as [TX TY Tz]T, where the two vectors are

related by
.TX cog W -gin P O TX. TX
T = TY =1 sin | cos ¢ 0 Ig = M TY
TZ 0 4 -1 Tz T

where ¥ is the heliocentric orientation angle (see Figure 5.1). The two
reference frames are oriented such that the Z and z axes are parallel; the
X and = axes form the angle, ¥, as do the ¥ and y axes, with

1 1,
cos V= X/(X% + Y2)2 | gin @ = Y/(X? 4+ ¥?)7?

5.3 Acceleration Error Simulation

The SEP spacecraft is driven by an electric engine which in turn
obtains its power from solar energy conversion devices, i.e., solar cells.
While the actual solar flux density follows the inverse-square law, for
outbound missions the actual available thruster power varies as ™. This
is due to improved efficiency of the solar cells at Tower temperatures (50, 2).
In addition to the thruster power variationﬁ, the propellant mass flow rate,

h, affects the magnitude of the thrust acceleration. In particular the

magnitude, a, of the thrust acceleration, 7, is given (50, 3) as
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-

B :
alt) = —=22 : (5.3.1)
M g .

where Iép is the engine specific impulse, g, is sea level Earth gravitational
acceleration, and # is the instantaneous spacecraft mass. These quantities in
turn are functions of ﬁumerous propulsion system parameters, all with vérious
uncertainties. Some of these have been mentioned -- beam-vo]taﬁu-and current,
grid warpage, and deadband control errors. |

Regardless of the sources of error, their effect is to produce un- .
certainties in the fhrust acceleration program. For the orbit determination
function, we are interested in the errors at this total level, and itis at
this level we propose to account for them. Now since we are not concerned
here with the guidance problem, the design.thrust program is arbitrary. Hence, -
for simulation purposes, a constant design_thrust acceleration magnitude i§
selected. Further, the program is such that the nominal thrust acceleration
vector, "*, i5 oriented colinear with the y-axis of the orbital frame. The
true thrust acceleration vector, 7, can be resolved into its orbit frame
components, I , 7;, and 2, in terms of its magnitude, @, and the clock and

cone angles, 0 and v, respectively (see Figure 5.1). Thus,

Tx 8in Y cos B
Ty =g cos Y o (&.5.2)
Tz ain y. sin B
and
a = a* + 6q (E.3.8)

where o* is the nominal constant thrust acceleration magnitude and &a is the
associated error. With zero error, the thrust acceleration is nominal, In

this case,
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a
In the presence of thrusting errors, v, 8, and Sa are non-zero thus nroducing
an off-nominal thrust acceleration vector.
The acceleration error magnitude is simulated usihg

Sa = 6a0 sin Wt + ) ‘ {5,3.8)

where da, and w are constants and where u, s a random variable with the
statistics

Elu =0, Plu?}=0? ' (5.3.8)
a a8 a

In the error simulation the instanténeous values of the pointing angles, vy
and 0, are assumed to be related as shown in Figure 5.2. This figure shows
the x-z plane of the orbital frame. Assuming the cone angle, v, is small,
the radius of the circle is the maximum deviation, siny = ¥, of the normal-
ized thrust vector* from its nominal position co-aligned with the y-axis.
Next, the quantity

d=8(t—tb) . (5.3.7)

is the distance that the tip of the normalized thrust vector has moved since
1t last touched the boundary given by the circle of radius y. The rate, o,
s simulated as a constant plus an additive noise component obtained from a
normal distribution, #(0, 052); t is the current mission time, and t is the
time the boundary circle was last touched bylthe normalized thrust vector.
¢2).
With this information the instantareous values of vy and & can be obtained at

The angle, ¢, is obtained by sampling from a uniform distribution, (g, o

each point in time. To clarify the process, the simulation logic is given

* That is, a unit vector in the direction of the thrust vector.
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-

in Figure 5.3. Assume the initial values of v, ¢, o, ¢ ¢

b 8, and o ando
are qiven. To determine the values of v and 0 at fk. the distance, Jk. is
first computed. Using the Taw of cosines, the angles Yy and r, are deter-
mined. Then 0 is computed by adding or subtracting Lo accqrdinq to the sign
of ¢. Next a test is made to determine if the computed Y, lies within the
boundary circle. If it does, then sample values from the normal distributions,
W0, Gyz) and N0, 082) are added to v, and 8, respectively. If the test is
not passed, then new values of 8, ¢, s, and t, are found. Normally distributed
noise is then added to i and 0, as before. For each point in mission simu-

lation time, the sequence is repeated to obtain appropriate simulation values

for the pointing angles.

Two observation types are empioyed for estimating the state vector.
These are the radar-measured range rate, p, of the vehicle, and the angle, |
£, Tormed by the Jines-of-sight to the Earth and to a specified navigation
star {(see Figure 5.4). In computing range-rate, the motion of the tracking
station, due to Earth rotation* as well as orbital revolution, is taken into
account.

Consider Figure 5.4. The range vector can be expressed as

p=ypr- r o=r-R -R (8,4.%0

where » is the heliocentric position vector of the vehicle; 2 is the helio-
centric position vector of the tracking station; R is the geocentric position
vector of the station; and Re is the heliocentric position vector of the

Earth. In the figure, the reference frame X“Y~"z” i5 a geocentric frame

% The diurnal effects of station motion have been showmn to provide a
significant contribution in obtaining accurate orbit determination (51, 34).
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aligned with xv%, The ¥ and X' axes are assumed to be a1igned; pointing to
the First Point of Afres, T. x"r”zZ” is a geocentric frame whdse X#-y" plane
contains the equator. Thus, x"y"z' is rotated about X' through the ang1é,
£, the obliquity of the ecliptic (¢ = 23%°). The heljocentric components of

He are simply

XE cos ¢

R,= VY |= |8 |]|sint (& )
Z 4
(=

where fﬁel is the magnitude of ﬁe, and ¢ is the Earth’s heljocentric orienta-

tion angle. The heliocentric components of E are X_, Yo and 7 1 they are

given by
fig =B m” ' IS
where
1 a 0
BE|0 e moine (5.t
a gin 2o ©
and
20a b o8 A
& s
F])S "o '/i’s ‘ eos q‘vq sin )‘5 | , . (5.2, a

ain ¢q

The angle, ¢_, is the geographic latitude of the tracking station, and voods
the vright ascension of the station.
Now taking the derivative of (5.4.7) with respect to time gives

p=%wp =p-R -5
I=1 k) =]

~—o_ —o_ . . oa
r RS QS b Rs RE we b He _ (5.4.5)
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where (0) ts the relative derivative, 2 is the angular velocity of the
station, and W is the orbital velocity of the Earth. To simplify the com-
putational process, the assumption is made that the Earih‘s orbit is circular
and hence w, and R, are constant. The angular vé]ocity, 8, is composed of
the sidefea] rotation rate, ws, and W |

Qs = ws + W,

E.ws" + o : (&6.4.7)

ws” is aligned with 2z and w_ is aligned with zZ.  Thus
p=7%-p
g

with
o= (FEw"+w) xXF +uw %R (5.4.8)
s 5 e S e e
Multiplying out # ws" gives
0
woo= —wq” 8in © | {&,4.9)
w ' pos £
5

Using (5.4.2) - (5.4.5), (5.4.7) and (5.4.9), equation (5.4.8) becomes

(- w*"cos el X ~w"™ainely
(= =y _S‘ b4 s

P o= fw + w " cos ) X + R
L= =y =5 . e

w " stn £ X
5 s

ar
. . » - -
fw_cos & - w ") cos ¢ sin A - w sin € ain ¢
e s s 5 e s
ro= |n | (W + w " coz &) cos ¢ cos A
g s o 5 5 3
w " ostn & cos ¢ cos A
s s s
- ain [
&
+ | ] w_cos T (5.4.50)
e &
- g
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with A = ]ws| tand ¢ = |we| t. Thus the desired range rate may be foﬁnd
as the magnitude, o, of (5.4.1).
The star-vehicle-Earth anale is measured on board the spacecraft. Tt

is found simply as

: 3+ (K - »)
=1 €2 N )
& = cos e - _ PN
'H:’;‘m I'I

For each simulated observation, random noise, P is added to the

=M

deterministic value by sampling from a normal distribution. If the discrete
observations at time ti are specified generically as (I, the associated statis-

tics for ». . are
1951

Flvg,t =0 , e, o..} =#"..6.. : fot, )
92 b

§id §7

5.5 Error Compensation Models

As indicated in section 5.2, the simulated thrust acceleration is
composed of a nominal or programmed thrusf acceleration, 7%, plus an error
component, m(i). The nominal dynamic mode! assumed for the estimation process
is essentia]]y.the same as equation (5.2.7). Of course, the accelerating
error vector, m(+), is unknown. We assume an approximation, e(t), to mi¢),
where e(z) is modeled as a stochastic process with {e()} satisfying one of
several possible first or second order differential equations. The elements
of e(¢) are the three orthogonal components of the acceleration error, and
are expressed in the orbital frame.

While the general form given by equation (2z.4.¢g) might be employed to
obtain a single representation for the error, the selection and use of
specific models offers the opportunity to investigate the effects of different

structures, i.e., stfructwral sensitivity. For this reason five different
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models are employed: three basic forms, two of which have two separate
configurations. These are described in the following paragrachs.

to be represented as purely random process noise. Thus only a selected state
noise covariance matrix is employed to maintain a positive‘definite erraor
covariance, and hence filter operation, and to prevent divergence. In.this
Case we define the estimated state vector to be XT :'[rT UT], and the
corresponding differential equations are

r =79

T

r+ A e Moy (6.5.1)

M is given by (5.2.2), and u is random state noise representing the accelera-
tion errors. The a priond statistics for u are

W{ul = 0, H{uift) uy(l)} = q/(t) S(t-1)

where 1 «{x, 5, z).

Model 1. The thrust acceleration error component along the aorbit
frame y-axis (in the direction of the nominal thrust) is approximated by a
first order Markov process; the z- and z- components, in the orbit frame, are

assumed to be purely random processes. Here the nominal differential equations

are

o= p
A

® u X

v o= - r+ Pt Mle O

| x| ?

u
z

with the addition of one of the following two configurations:

a) e =u (6.5.4)
L]

b) e = *(]-Q'i‘-ue o= u (&,

o°r
T
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The random variables Uys U s U, and U have the statistics

E{MZ} =0, E{uZ(tJ MZ(T)} = qz(t) §(t-1)

where 7 e{x, =, e, a}l. For each of the configurations a) or b) above, the

corresponding state vectors to be estimated are

r r
X =1v or X =|v (4,007
¢ &3

respectively.

Model 2. The thrust acceleration error component along the orbit
frame y-axis is approximated by a second order Markov process. The .- and =-
components are again assumed to be purely random elements. The corresponding

nominal differential equaticns are then

r o=y
U
. u X
v = - v+ I+ Mle
|| ?
U
Z
: :g tt‘.g. !

plus one of the following configurations:

at]
S
.
Il
I
-
o
M

(5.

o
P
b

o

R .
I
1
=
&
-
=

The random varjables Hys Uys U and g have the a paion{ statistics
£lu b =0, E{uzft) Uy (1)} = q.(t) §(t-1)

where 7 e{x, z, g, B}. For each of these above configurations the correspond-

ing state vectors to be estimated are
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r r
v
X =1e ar X =] e
g g
B

respectively.

In the ensuing discussions the particular wodels and state vectors
will be referred to often by their model number and letter confiquration.
Thus model 2b is that described by model 2, equation (&.0.8), and confiqura-
tion b}, equation (5.5, 10). |

Note that each of the above model forms seeks to approximate =i(¢! in
its own way. Model 0, of course, has a null structure as defined in section
3.3. Model la approximates m(t) by a sequence of constants (Figure 5.5a}:
model 1b uses a sequence of exponentials (Figure 5.5b). Model 2a employs
straight line segments (Figure 5.5c), and 2b approximates m{t) by a sequence
of arcs corresponding to the output of the simple harmonic oscillator.

For any of the assumed models, the state vector differential equation
can be written in the general form

T

X(t) = F(x, &) (6.5.07)

L1

f

In view of (5.2.1), F(x, t) is a noniinear vector function: hence a sujtable
estimation procedure is extended form of Algorithm I. This is basically the
same as Algorithm II, except that here the integral form for ?% is replaced
with the discrete form given by (71.2.17;.

In forming P, given by (1.2.17), the term TgT” is required. Two
methods for determining‘this are given by equations (7.2.30), (1.2.33z), and

(71.2.35a). The latter form,
T 2 T T
rqav =f B UEB P It (1.7.553)

tk— I
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s the more correct form, and is used exclusively when dealing with constant
input values for v §(t-1) = E{u(t) uf1)}. In this case the elements of i are
the terms 4 where 7 is taken from one of the index sets associated with
Model G, 1, or 2. Numerical computation of FQFT is performed as a simple

quadrature based on the mean value theorem of integral calculus:

T T T T, At . )
= —— 5,10)
rqr (Bk U Bk + ®k,k—1 Bk_l U Bk—l ®k,k—l Y, 5 {5.5.1

For the cases where the sequential ¢ estimation algorithm is employed,

equation (7.2.33a2) is used with ' given by (7.7.50):

r t/ﬁ ¢ A dr Cliad)
".

k-1
This form is required because the T matrix itself is used. In this case we
let v =@, and the elements are again the terms q, with I taken from the
appropriate index set. The numerical computation of T is carried in a manner
similar to the above, again using the mean value theorem:

At
T = (Bk + @k,k B, )

_7 By B {(5,5,73)

The elements of B for all models are given in Appendix B.

5.6 Simulation Process

Figure 5.6 is a functional flow diagram of the simulation process.
It represents the logic followed by the simulation computer program. Input
data is read from an appropriate input file, and various problem parameters
and logic switches are initialized. Both the simulated and nominal trajec-
tories are numerically integrated simultaneously through one observation
interval. The simulated thrust acceleration is computed according to Figure
5.3, and the nominal thrust acceleration computed from one of the appropriate

error models of equations (5.5.17) through (5.5.20). In addition, the
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differential equation for the state transition matrix,

b(t, t) = A(t) O(t, tj) (1.2,99)

is simu1taﬁeous]y integrated. As discussed in section 1.2, the matrix, 4, is
the partial derivative of F with respect to the state, x. The elements of 4
for each model are given in Appendix B.

Next the first simulated observation is computed with a random noise
component being added. (Observations are processed one at a time; hence, we
have the computational advantage of scalar observation.) The corresponding
nominal observation value is determined, and the observation mapping matrix,
H, evaluated. The elements of # for each observation are given in Appendix C.

The estimation equations are employed to obtain the state estimate, X.
If any further observations are to be processed at this time point, the appro-
priate logic is repeated as shown in the figure.

A test is made to determine if print output is required, and if so,
the appropriate information is written. A test is also made to determine if
the final simulation time has been reached. If it has not, the process of
integration, observation, and estimation is repeated for the next and succeed-
ing observation intervals until the final time is reached. Finally, data
plotting is accomplished as determined from input data and the simulation run

terminates.

5.7 Numerical Results

In performing the various numerical simulations, a common set of basic
problem data is consistently used. This approach provides a common basis for
evaluating the estimation performance of each of the approximating models.
This set of data is given in Table 5.1. The initial conditions, position and

velocity, are the same for both the simulated and nominal trajectories. The



Initial Conditions Initial Uncertaintiés Thrust Acceleration Error Simulation
X{ . 1505 % 10% km 0% km Sa, = 6% a* = 1.8 x 107 % mm/sec?
Yi 0. km 0% km o= .6% ¢t = 1.8 x 107} mm/sec?
7| -8378. km _10% km _ s = .6 % 10 ¢ pad/sec, o_ = .24 x 1077 yad/sec
il o. m/sac 20° m/sec O, = Og = 001 rad, U¢ = .91 rad
V| 31,743 m/sec 10% m/sec Y = 01745 pad, w = .15 x 10" ° Hz
i 73. 8 mfsec 20% m/sec Period of 8a = 2n/w = §.65 days
Observation Variances Nominal Thrust Acceleration
R,é = (.5 mm/sec)?® @ 1 min intervgls =53 =0 nm/sec’
Ry = (7 arsec)® @ 10 min intervals ¥ = a*= .3 m/sec?
Obgervation interval, At = 50 min (Orbital :?eferencé)
Tracking Station Longitude Latitude Constants
Woomera (JPL-41) 136° 53' 14"  -31° 22' 55" gy = 1827 % 1072 km®/sec”
Goldstone (JPL-14) 243° 06' 37" 35° 25" 33¢ ' w, = .199 % 10 % pad/sec
Madrid (JPL-61) 355° 45' 3¢ 40° 25' 44" w =787 # 197" rad/sec
Navigétion star unit vector elements: § = .5538, .7284, .z24¢

Table 5.1 Nominal Mission and Simulation Parameters

641
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observation interval is a constant 50 minutes for each observation type:;
hence the corresponding variances are scaled to agree with this sampling
rate. The initial geometry is such that the Greenwich Meridian intersects
the X-axis at midnight, GMT*, fdrming the spacecraft initial subpoint
location.

In order to gain an idea df the acceleration error components, the
plots shown in Figures 5.7 and 5.8 were obtained. Figure 5.7 shows the error
components along each of the orbital frame axes as functions of time. Note
the periodicity of the y-component and the irregularity of the x- and z-
components. Further, the y-component is approximately three times as great
as the others. Figure 5.8 shows the trace of the thrust acceleration vector
projected on the orbital frame x-z plane. Note the approximately circular
bound of radius = .0055 rm/sec®. The errors are also seen to be somewhat
concentrated in the first guadrant, and rather less dense in the fourth
quadrant. As the simulation time continues beyond the 35 days shown here,
one can expect that these errors would be more uniformly distributed within
the full region.

In the following paragraphs numerical results are presented showing
estimation performance for the various models and approaches. In presenting
the data, two quantities are plotted which represent a fiqure of mevit of
performance. These are the Fuclidean norms of the error components of posi-
tion and velocity, and the square root of the trace of thé appropriate
covariance submatrix elements. The ensuing discussions will refer to these
quantities as RSS (root-sum-square) and RTC (root-trace-covariance),

respectively.

* GMT = Greenwich Mean Time; see, for example, (9).
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Nominal Cases With and Without Model Error. Figures 5.9 through 5.12

show the position and velocity error norm, RSS, for the nominal data of Table
5.1, both with and without thrust acceleration modeling error, respectively.
Clearly the estimation performance in Figures 5.9 and 5.10 is erratic and
unacceptable, producing estimation errors as higﬁ as 20,000 km and 18 m/sec.
The rapid decrease in the error covariances is illustrated by the short dashed
Tine, the RYTC, near the origin. Figures 5.11 and 5.12 illustrate the case of
perfect modeling. Here both the actual and assumed thrust accelerations are
of constant magnitude, always directed along the orbital frame y-axis. Two
R3S curves are shown in each figure, corresponding to two different values

of the observation error variance Tor the star-Earth angle, I. In both cases
the RSS values become substantially Tess than 2 km in pesition and .004 m/sec
in velocity as the estimation process proceeds.

Perhaps more interesting is the sensitivity. shown by these curves,
of the estimation process to differences in the ohservation error vériance.
The solid Tine in Figures 5.11 and 5.12 represents the RSS for the nominal
(Table 5.1) value of Hg = (7 arcsec)® The dashed line corresponds to an

-increase of 3 arcsec resulting in Ry = (10 arcsec)?. In both cases, of course,

El

each value is used for both the true (simulated) and assumed (nominal) value.
This change in the value of Rg illustrates a somewhat surprisfnq sensitivity
of the estimation accuracy to this particular measurement type. For the
increased RE the position RSS is more than twice that for the nominal value.
Clearly similar behavior is seen for thé corresponding veTocﬁty RSS.

The sensitivity of the estimation process to %_, and the problems of

g
actually developing equipment capable of such high accuracies prompts the
guestion of nécessity. Are & measurements indeed necessary? To answer this,

consider the information obtained from a single range-rate observation. From
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equation (17.3.21), letting § = k-7, we first make the approximation that
ék’k_l =~ 7 for small A¢, so that

T T -1 T -1
® k., k-1 A k d k Hk ¢k,k-l = A k # k Hk

Dropping the subscripts and employing the 5 elements of # defined in Appendix
C, we have for the ¢ - 7 elements correspending to position (i, j = 1, 2, 3),

T -1 r . . .
[E R H]ij = [(X, - Xéi) - (Xi - Xgi)(p/p)]

¥ o- X - - X (8 2 | 7
[(Xj Xéj) (X3 ng)(p/p)]/(p R) | (5.7.1)

where p is the range from the tracking station to the vehicle. X and Xgi
are elements of » and r respectively. For the velocity elements (<, j =
4, 5, 8),

T Rt my = (. - x (X, - X /(0% R) (5.7.9)
ij 1 s1 J 57 .

and for the mixed terms (4 = 17, 2, 3, J =4, 5, &)
T =1, _ . _ _ . . - 2
R HJij = [(X,; X ) - (X, Xsi)(p/p)] (Xj, Xéj)/(p R)
(5.7.3)

Now consider the situation where the vehicle and tracking station are in the.
ecliptic (heliocehtric X-Y} plane, with no velocity components directed out
of the plane. C(learly the information derivable from the range-rate measure-
ment for the Z-component (¢ = 3) of position and velocity is zero. Now while
this configuration is not usually the case, the values of the position and
velocity Z-components of both the vehicle and the station are small enough to
make the information quite small. Thus the range-rate measurement contributes
only Tittle information for the estimation of the out-of-plane components of
the state. (Note that the information would be even less if station motion
were not considered; this further substantiates the claim set forth in

(51, 34).)
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To see how the angle measurement, &, alleviates this problem, consider
the corresponding elements of the information matrix, again for one measure-

ment and with the approximation, ¢ ~ 7. For the position elements (£J g o=

1, 2, 3J),
[ (X . - x.) ]
[HTR'IH]..:S.—GOSE‘_-@*{'—_L .
17 X1 |R _ PI
(=4
(Xe. - X)) , )
L S . ; P e &
ij ~ cos § /s (|he - 1! N osin® )
12, =l ] (5.7.4)

Here, even when the Z-component of position is zero, the corresponding infor-

mation term is, in general, non-zero. Only when

- ze-Z) - '(ze—z)
£ = cog s — = 2oz LA84E8 | ————
z |Re__r,| |Ee-1”|

is the information term zero. Now Z, is zero, since the Earth remains in the
ecliptic, and 2z is very small compared to ]Re - r|. Hence the approximate
value of £ = 90° results in a corresponding value of zero for the information
term. This value can, of course, be encountered in practice. However, for

the periods investigated in the simulation, this particular geometrical con-
figuration was not encountered. {In passing we note that the values, & = g, T,
could lead to some numerical problems &ue to the division by sin £. However,
for the navigation star selected these values of g.cannot occur. )

For the velocity elements, the information term, HTR"IH, is zero since
the corresponding elements of & are zero. Thus estimates of the Z-component
of velocity must rely almost solely upon the information derived from the
range rate. This dependence is manifested by errors in the out-of-plane
velocity which are sometimes as much as an order of magnitude greater than

those of the other components. However, this particular problem is partially
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alleviated by accurate estimation of the position. This is true because the
acceleration is, in part, a function of position, i.e., equation (5.2.1).

Thus accurate estimates of r keep the nominal velocity values fairly accurate.
Mbre directly, the elements of the state transition matrix, previously assumed
to be diagonal, in fact contribute a coupling of information elements to aid
accurate estimates of the velocity.

While the previous discussion has been directed toward the information
abtainable for the Z-components of the state, very similar conditions and
explanations apply for cases where the vehicle is on or very near the X- or
Y-axes. For example, initially the vehicle is on the heliocentric X-axis.
Only one station, Madrid (JPL-61), is initially tracking. The vehicle is
almost directly overhead, hence, p = ¢, and (¥ - fs) = 0. Thus, only a small
amount of information about ¥ is available since 3p/3Y = 0. Similarly, for
these conditions, X - ié ~ 0, and hence 3p/3X = 0 yie]ding littie information
about X. However, information is available from the star-vehicle-Earth angle,
£, which does aid the estimation of these otherwise Tocally* uncbservable or
nearly unobservable elements. VIn‘fact, it has been found that conditions such
as these occur quite often at various times throughout the mission. The result
is that without the angle measurement, &, extremely large estimate error
values often occur. |

Thus in view of the foregoing discussions, it is desirable to have
an additional or supplemental measurement type. The onboard angle, o, appears
to be a viable candidate producing useful information to aid the orbit

determination process. One of its chief disadvantages is the high resolution

* The term local observability might be suggested for those state
elements which are observable for only a subset of the total observation set.
Thus a system could be described as locally observable if (1.3.27) holds where
the observations {yj, ceas yk} form a proper subset of Vk.
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demanded to produce accurate estimates. Another disadvantage is discussed

later.

Modg] 0 - State Noise Covariance. A number of simulations were per-
- formed using_various.va1ues of the diagonal state noise covariance matrix,
Us (see sections 1.2 and 5.6). Typical results for ihree 1inear1y.reﬁated
values of U over a 60-day period are shown in Figure 5.13. Here the estima-
tion performance is reflected by the position error RSS foﬁ the following
values of U: |
U, = I(.16 x 10°% 166 x 1975 .18 x 10°5)7 (mm/cec?)?

(.16 x 10710 186 % 107 .16 x 10717 (pm/sec?)?

<
Il

Uy = T(.16 x 1072 166 x 107" .16 x 107'2)T  (mn/sec?)?
Cxamining the figure, as the staté notse covariance is decreased, we begin to

see divergence of the state estimate. In fact, for all cases, including that

corresponding to the largest value, U, divérgence is at least starting near .
the end of the simu1at16n period. _

A particularly interesting feature is the appareht trade-off in the
vaiues of U and the maximum estimation accuracy obtained. This is shown by
the large dips in the RSS curves at aboutllo days. For the smallest value,
U,, the RSS curve has the greatest dip; for v, the dip is smallest. An
intuitive explanation of this phenomenon is based on the following reasoning.
Initial filter operation produces estimates of greater and greater accuracy
as more observations are taken. If the value of // is small, the error co-
variance decreases rapidly, producing more nearly optimal estimates and thus,
for a short time, more accurate estimates. However, eventually the covariance
becomes so small that it is unable to cope with the error buildup, and di-

vergence occurs. -On the other hand, for a larger o the error covariance does

hot decrease as rapidly. Hence, the filter is not operating near the optimum,



Fogition Error RSS and R7TC (km)

q RS58 for

H Ul
2000 1y

memrmem Uy &

———, | {;
RTC for - ¢

5 Boe8 o0 U'iU]_ : f
1600-& i 1

8004 ¢

g Ry, -m"’.
~ .\woﬂnﬂl’“t f

200 444

L A I T T

T i i I I T |
a A i8 a4 : 32 49 48 56

- Figure 5.13 Position Error, Model O

4!



193
and estimate accuracy is therefore not as good -- at least during the short
period around 10 days. However, the presence of a larger ¢ keeps the filter
operating longer hefore divergence occurs.

Next note the dotted curve which corresponds to the maximum RTC, 1.e..
that for v,. Its average value is approximately 70-80 km, a value which does =
not reflect the error RSS of 300-400 km. (A1though they are not shown, the
RTC's corresponding to Uz'and U, all lie below that for v,.) This suggests
that the value of U be increased.

Such an increase produces the estimation results shown in Figures
5.14 and 5.15. The increased elements of & have the values,
q,=4q,= .16 % 107" (mm/sec?)?®

X

q, = 166 x 1072 (mn/sec)”

These figures show position and velocity RSS and RTC curvés for both the
nominal acceleration error and an increased error, to be discussed later.
In Figure 5.14 the position error RSS is seen to be greater than that obtained
in Figure 5.13. However, the RTC curve is a better measure of the accuracy.
even though it does not bound the RSS curve. Further, the estimate remains
fairly stable throughout the éimu1ation period of 60 days. This is further
supported by examining Figure 5.15. Here the solid curve represents the
velocity error RSS over the 60-day simulation period. Although there are-
some fairly 1ar§e error peaks during the latter 30 days, overall the velocity
error RSS appears generally to be free of divergence during this period.
Figures 5.14 and 5.15 also show the estimation perfarmance for the
case where the thrust acceleration error is increased by a certain amount at
30 days into the mission. This increase is produced by changing to the

following acceleration error simulation values:
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Y = .026175 vad

Sa, = .0027 m/sec?

This corresponds to a 50% increase in the nominal values. A plot of the
corresponding y-component of thrust acceleration error is shown in Figure
5.16. Figures 5.14 and 5.15 thqs refTect the ﬁbi1ity of the algorithm to
handle changes in the thrust acceleration error. For.the corresponding positioh
error RSS, the differences between the nominal and increased thrust accelera-
tion error are essentially nonexistent, and are therefore shown together as
the solid curve. The dotted Eurve is the RTC for both also. In Figure 5.15,
however, the velocity error RSS curves are slightly different, with the RSS
for the increased acceleration being given by the dashed curve. As expected,
the error is slightly larger than that for the nominal acceleration error
simulation. As in Fiqure 5.14, the dotted curve represents the velocity error
RTC for both cases. However, a curious aspect is the behavior Qf the RTC
curve. This is seen as a generally increasing trend from about 10 days. The
data also reflect a similar, but considerably less detectable, behavior for
the position RTC. One possible explanation for this fs the fact that as fhe
vehicle moves farther from the Earth, the anglé measurement, £, becomes less
sensitive to changes in position. For example, initially the spacecraft is
approximately 9.25 x 10° km from the Earth. The standard deviation of 7
arcsec for the onboard angle measurement corresponds to an arc length at this
distance of approximately 31.4 km. By 60 days into the mission, the spacecraft
is approximately 1.53 x 107 km from the Earth; the corresponding arc length

is approximately 519 km. While this behavior could be seen more rigorously

in terms of the information matrix, the effect is clear: 1less information

is available from the onboard measurement angle as the distance from the

Earth is increased.
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Models 1 and 2. Figures 5.17, 5.18, and 5.19 show the estimation
performance for each of the other four approximating models. For these
cases, the thrust acceleration error parameters are increased to the same
values as for Model 0, above. Further, each case employed values of G, as

indicated below.

q g_ = .16 x 107" (mm/sec®)?
Model la | * “

.18 % 1907 Y% (mm/sec?)?

-y
H

g.=qg = .16 x 10°" (mm/sec?)?

10 (mm/sec?)?

X

Model 1b lg = .5

Qy = +q * 107°° sec

g, =q_= .16 x 107" (mm/sec?)?
Model 2a } * % _ ‘

q, = -3 %10 24 (mm/sec®) ?

4, =49, = 16 x 107" (mm/sec?)?
Model 2b q, = 207 %% (mm/gec")?

qg = .5 %x 1072 gea”®

Figure 5.17 shows the position error RSS for each of the model con-
figurations. As expected, the estimation accuracy aenerally is improved over
that for Model 0. Most remarkable is the accuracy with which Model 2b yields
performance estimates. This is represénted by the solid curve, and corresponds
to an average position RSS of about 60 km (time > 10 days). This approaches
a factor of 5 reduction in the RSS values for the other models. It is
important to remember, however, that Model 2b corresponds to the correct
structure of the actual thrust acceleration error magnitude, and thus one

would expect superior performance. We remark that Model 2b is not quite
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the exact structure for the y-component of acceleration error, however.
This is due, of course, to the fact that the thrust acceleration error vector
deviates from its nominal orientation so that Model 2b is attempting to
approximate the y-axis projection of the thrust aéce]eration. Further, we
have employed a differential form, and consequently truncation errors in the
numerical integration a]gorithm contribute what appears to the estimation
equations to be a form. of model error. It is these aspects which require the
use of a small state noise covariance matrix (also see (11} ).

The next most accurate performance is. that provided by Model 2a,
simple linear form. As shown by the alternately dot-dashed curve, the average
position RSS is approximately 300 km (for time > 10 days).

The two first order models, la and 1b, produced acceptable estimation
accuracy, but not as good as expected. In fact, Model 1b produced a position
RSS curve of about 450 km, some 80 km greater than that for Model la. One
‘possible reason for this is that too small a value for one or a number of
the state noise covariance é]ements was usedf This suggestion.is supported
by the fact that the associated error RTC data indicated an approximate steady
state value of 280 km, a value somewhat below the actual RSS curve. 1In all
cases a considerable number of runs were made for each model to obtain appro-
priate values for the state noise covariance matrix elements. This process s
tedious, time-consuming, and expensive, and for this reason, it was decided,.
following some effort, not to pursue this "tuning" process further. Clearly,
one would expect that more accurate results could be obtained by varying the
q; values until the position error RTC and RSS.become approximately the same.

For each of the other models, the indicated values of g, resulted in

7
RTC's which coihcided with or exceeded their respective RSS data. The model

producing an error RTC greater than its RSS data was Model 2b. In particular
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the RTC data indicated an average value of approximately 295 km. Presumably
further tuning of the filter would result in even greater accuracy for Model
2b. For the reasons cited above, this was not done.

Figure 5.18 shows the velocity error RSS curves for each of the models.
Here the performance appears to be nearly the same for each. However, these
curves are in general more erratic than in Figure 5.19. In particular, toward
the end of the simulatfon interval the effects of the increased thrust accel-
eration error arée rather pronounced. In spite of this, there does not seem
to be any indication of a tendency toward divergence; hence, for all these
models, the estimates are stable over the entire interval. VFurther, in all
cases the corresponding RTC data bounded or coincided with the RSS data.

Figure 5.19 shows the estimates of the thrust acceleration y-component
for each model. These estimates are those which resulted in the estimation
performances of Figures 5.17 and 5.18. Each estimated acceleration curve
represented by the heavy, solid line is identified with the éorresponding
model number. The estimated curves are superimposed over a lighter curve,
the true y-component of thrust acceleration error. As seen from the figure,
all four models perform admirably in representing this component of accel-
eration error. Particularly notable is the fact that all methods adapt to
the increase in the acceleration error at 30 days. Now, the plots for Models
la and 2b do not appear to be very different (although the position and
velocity RSS's in Figures 5.17 and 5.18 indicate otherwise). On the other
hand consider the respective curves for Models 1b aﬁd 2a. Close examination
of the Model 1lb curve reveals that a number of the actual error peaks are not
matched by the approximating curve. This is possibly due to a smaller than
necessary state noise covariance matrix and presumably the estimates would

be jmproved if this matrix were increased in value. This further supports
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the suggested explanation why Model 1b yields the largest position error BSS.
Next, examining the Model 2a curve reveals that the estimated values near
the error peaks are larger than the actual error (the breaks in the approxi-
mating curve indicate where the values extend outside the limits of the
grapﬁ). In view of the previous suggestion concerning Model 1b that the
state noise covariance is too small, the implication here is that the cor-
responding covariance is too large. In this case, however, il has been found
that the position error RTC data coincides very closely with the RSS curve.
Further, the fact that the Model 2b simulation yielded RTC values which wére
well above its RSS values, tends to discount this explanation for over-
estimating the peaks. The actual reason for this behavior is not clear. Two
possible explanations are offered. First, it is possible that generally over-
estimating the acceleration error simply results in orbit determination
performance which is more accurate than that resulting from under-estimating
the error. Second, the plots shown are generated using approximately every
fourteenth or fifteenth‘point, Thus many values occur which are not shown,
and on the average, 1t is possible that considerably better estimates of the
error are obtained for Model 2a than for Model 1b.

In view of the foregoing discussions, it appears that generally the
second order models, 2a and 2b, are superior in representing thrust accel-
eration errors of the type encountered in the simulations. Further, the
importance of exact modeling to the maximum extent practical is clearly
fllustrated by the exceptional performance of Model 2b.

Sequential Estimation of the State Noise Covariance. We have seen

rather accurate performance using an a priori constant state noise covariance
matrix associated with each of the models. However, in view of the many

numerical simulations which invariably must be performed in order to “tune"
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the state (vector) filter, a natural alternative is to employ the sequential
state noise covariance or ¢-filter to aid in this process. This has beeh
‘quite successful as we now proceed to show..

First, some comments dealing with general performance are in order.
Inftia11y, numerous runs were made to investigate the effectiveness of the
sequential g-filter. In these cases operation of both the ordinany state
filter and the g-filter was simuitaneously initiated. Results were obtained
for all models and were less than satisfactory. In all of these cases, the
performance was worse than that obtained by simple tunming of the state filter
using a pricai constant values of ¢@. Attempts were made to improve the
performance of the g-filter by employing different a priond values of both
f and the @-error covariance, §; using different constant values of the
observation residual error variance, T3 and using the “"sliding window" modi-
fication to the T-estimator, equation (3.6.36). These attempts met with 1ittie
success. After exhausting such approaches, a re-examination of the strategy
for employing both the state and g-filters was made. This revealed that
possibly the‘initia] transient operation of the state filter was having a
detrimental effect upon the g-filter performance. To investigate this, runs
were made in which in which initiation of the ¢-filter operation was post-
poned for the transient period of state filter operation, approximately 5
days. The results were highly encouraging.

To illustrate this strategy, cases fqr Models 1b and 2b were run.
Recall from previous discussion that the results obtained in Figures 5.17 -
5.19 suggested that the state noise covariance values appeared to be too small
and too large, respectively, for these models. For this reason, it was felt
that the @-filter could improve the values of ¢, and hence the‘estimation

performance. For both models, simulations were run for 30 days using the
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initial data given in Table 5.1. In addition, a prioni values of @ were

taken to be those of ¥ corresponding to the results obtained in Figures 5.17 -
5.19* (see page 198). The initial values of the @ error covariance matrix,

g, were selected to make g, diagona1.A The 5, elements corresponding to
diagonal elements of ¢ were chosen approximately as the square of these «
pbreonrde ¢ values. The 5, elements corresponding to off-diagonal or correlation
terms of ¢ were taken (approximately) as the product of the a prdoid diagonal
g elements corresponding to the row and column of the correlation term. Thus,
at t = 0,

~ 2 ~ 7.5
811 7 955 )k = TUmm 9nn (6.7.5)

Taking this approach was an arbitrary choice. However, it was found that
relatively accurate values for 5  are necessary, and the rule-of-thumb given
by (5.6.5) was found to be a viable approach. In view of this, the a puiond
5 values are given in Table 5.2 for each of the two b models.
Because of the extremely small values of many of the s;i, diffefent
" units are used in carrying out these simulations, namely, millions of meters
and millions of seconds. This is done in order to avoid numerical difficulties.
In order to test the adaptability of the @ filter, increased acceleration
errors were simulated at 15 days. This was done by again increasing v and
da, by 50% to
Y = .026175 rad

Sa, = .0027 m/sec?

In determining the observation residual error variance, T, the sliding window

modification, equation (3.6.36) was used with the small a paioni value of

* Recall the discussion in section 5.5 assoclated with the computation
of '. Because [' itself is required, equation (1.2,30) is used, and hence
we assume, approximately, ¢ = I.



Diagonal Corresponding i Variance Values for

S Element g Element Model 1b Model 2b
s1) qu = q, 10”10 (mrn/_secz)“ 107 (mm/ees?)t
522 q12 1071 (mm/gec?)t 1071 (mmsacc?)t
833 g3 10" (mm?/sec’)? 1027 (nmisec®)®
Sy g1y 10 %Y (mm/sec')? 107 %% (mm/pea®)?
Ss55 q22 = q, 1071 (mm/gec?)t 101 (mm/sea® )"
Ses q23 10°1° (vm* feee™)? 10727 (mm/sec’)t
877, Gay 107" (mm/zect)? 107 %% (mm/sec®)?
Sgg qas = 9, 4, 10728 (mm/zec®)? IOHM‘ (mm/sect )
S99 g3y 107 %2 (mm/sec®)? 10 %% (rmm/gec’)?
810 10 quu = 4y dg 1077 gec ® 10750 gec 17

Table 5.2 A Priond S Values
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T, = 10 '* (mm/sec)®. Twenty residuals were used as the residual batch size,
i.e., ¥ = 20, in (i.6.58). Finally, in carrying out the simulations, the
¢ filter was ﬁot operated until the fifth day of mission tine fn order to
avoid the transient effects of state filter operation.

Figure 5.20 shows the position RSS and RTC for both & models: 6.20a
for Model 1b, and 5.20b for Model 2b. In both cases the performance is quite
good. Figure 5.20a shows a particularly significant increase in performance
over that shown in Fiqgure 5.17. The RSS curve has been lowered to an approxi-
mate mean of 1257km; a considerable improvement over the previous 450 km of
Figure 5.17. Further, the RTC curve is more representative of the actual
RSS error, although it appears to be slightly low. For Model 2b there does
not seem to be any noticeable improvement in the estimate as reflected in the
RSS curve. Both here and in Figure 5.17 the RSS has a mean of around 60 km.
However, the corresponding position error RTC is now an accurate representa-
tion of the position error, and adequately bounds the actual error RSS. Note
that for both models the filters easily handle the 50% acceleration error
increase at 15 days. ‘

Results obtained for the velocities are shown in Figures 5.2la and
5.21b. The performance is comparable to that shown in Figure 5.18. However,
for Model 1b the velocity error RSS curve has some peaks which are larger
than those of Figure 5.18b. These peaks seem to be decreasing in amplitude
after the largest one at 21 days, and therefore do not suggest divergence.
However, the RTC is somewhat lower than the RSS curve, and if is possible that
divergence may appear at some later time. As before, the results for Model
2b are particularly good, although here also there is a large error peak at -
about 21 days. Again the RSS decreases, and, except for the peak, the RTC

mean of about .2 m/sec adequately reflects the true error.
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It is entirely possible that the peaks in the error RSS curves may
be due to operation of the filters as they éttempt to adapt to the accel-
eration error. Figures 5.22a and 5.22b sugges{ this possibility as they show
the true and approximated thrust error accelerations. In particular, Figure
5.22a shows that the Model 1b error approximation is slightly out of phase
with the true error. Further, it ié smoother.and does not reflect the more
erratic behavior of the‘actual thrust accelerafion erroyr. On the other hand,
Model 2b does a reasonably good job of approximating the true errér. In
either case there are rapid alternations at the true error maxima and minima
which are difficult to approximate and which are therefore quite capable of
resulting in the peaks in the position and velocity error RSS' .

Figures 5.23 and 5.24 are p10t§ of appropriate RTC values for the
state noise covariances. These figures illustrate quite well the expected
changes in the state noise covariance values. Figures 5.23a and 5.23b show
the respective Model 1b and Z2a state nofse covariance RTC curves for the
orbital frame x-z components of erégr. Note that both curves reflect the
constant a piiond values. At 5 déys there is.a rgpid Lnerease in the RTC
value for Model 1b and a decrease in the RTC for Model 2b. This behavior is
exactly that expécted to improve the position and velocity RSS'. Also nOtabie
is the increase in these g estimates at about 15 days, corresponding to the
increased thrust acceleration error. Thus the g filter is actually adapting
its estimates to account for these error increases. This behavior can also
be seen in Figures 5.24. Figure 5.24a shows the state noise covariance RTC,
vﬁ;', carresponding to the noise term in the approximating differéntia?
eguation (5.5.5). Likewise, Figure 5,24b shows the covariance RTC, J%;_,
corresponding to the noise term in (5.5.70). We again see the constant a

prioni g values for both cases during the first 5 days of the mission. At
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this point changes occur with ¢§; increasing and %5; decreasing as expected.
Again at 15 days both estimates begin growing as the g filter attempts to
account for the increased model error.

For the mode]l parameters, o and B, the corresponding state noise
cdvariance estimates retained their a pilond values with no discernible
changes as the estimation proceeded. This.is attributed to the very small
a prionl values of s,, ,, corresponding to these parameters (Table 5.2).
Recall from Chapter 4 that too large a value of ¢ for the model parameter, «,
resulted in 2's following the observations, thus destroying the correlation
effects. In view of this, the 'suggestion is made that it is better, within
parexic bounds, to let such parameters tend more to their constant_va]ues.
This strategy is further motivated by the initfal results obtained when both
the state and @ estimations were initiated simultaneously. Thus initial values
of 5 normally should be chosen as nearly representative of the true uncertain-
ties in @ as possible. An 1nterestin§ aspect of the ¢ filter performance was
noted in using constant values of the residual variance, 7T, és opposed to
estimating them via (3.6.36). Results indicated that variations in 7 by as
much as three orders of magnitude produced essentially no overall change in
estimation accuracy from that obtained in the foregoing cases. Generally,
however, 1t is recommended that T be estimated, thus eliminating additional
a priond guesswork.

The main disadvantage of‘the g filter appears to be the increased
demand upon computation time. This can be severe, particularly for ﬁore
complex models. For example, the two models treated here required nearly
50% more execution time than that without the sequential ¢ estimator. This

aspect 1s substantial motivation for keeping the approximation structures

relatively simple.
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As a result of the applicaticon of the sequential ¢ estimator, we
have shown that it is possible to improve the knowledge and confidence in
the state estimates. It is most important, hoWever, that the @ filter opera-

tion be initjated after the transient period of the state filter is passed.

5.7 Summary and Conclusions

In this chapfer we have jnvestigated the performance of mode1 error
and state noise covariance estimation algorithms as applied to the orbit
determination problem of an SEP spacecraft subject to anomalies in the thrust
program. MWe haﬁe established that some supplementary measurement type is
useful in addition to the normal radar range rate observations. The use of |
the onboard star-vehicle-Earth ahgle, while providing such information, suffers
two main disadvantages. First, high measurement accuracies are necessary to
make the technique useful. Second, as the distance of the vehicle to the
Earth increases, the measurement angle uncertainties translate into larger
position uncertainties. This latter problem suggests some alternative approach,
such as switching to the target body (in this case, the asteroid) as the
approach phase is entered. This‘wou]d provide the reverse effect with greater
accuracy being obtained as the vehicle approaches the target. Another alter-
native is to employ a different measurement type. A potential candidate is
quasi, very long baseline interferometry {QVLBI}. This has been shown to
offer greatly improved observation accuracies over that obtained with con-
ventional range rate tracking (52), although additional devéfopment is
required to make it practical.

The use of a state noise covariance matrix {Model 0) to maintain
filter operation has been shown to be effective in prevénting divergence of
the estimates, and can yield accuracies of less than 500 km position error

RS5. In general, the performance can be improved using any of the other
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models investigated, although the second order models {2a and 2b) appear to
offer greater accuracy and stability of the estimétes._ In particular, the
superior performance (RSS = 70 km)} of Model 2b, being the closest in structure
to the actual error, confirms the importance of accurate modeling to the
maximum extent practical.

In all cases, a state noise coQariance matrix is required in order
to prevent filter saturation and subsequent divergence. However, with the
estimation of the model errors, the state noise, and therefore the error
covariances, are smaller than without model error estimation.

Application of the sequential ¢ estimator has been found to be a
workable approach for estimating unknown state noise covariances. For the
error approximation Model 1b, the @ filter greatly improved the RSS error;
decreasing it froﬁ 450 km to about 120 km. The state RTC in both cases has
been shown to be an adequate reflection of the confidence in the estimates,
particularly in the case of Model 2b, where the RTC practically bounds the
RSS. Of paramount importance in employing the state and ¢ filters is to
insure that @ filter operation is not initiated until after the transient
period of state filter operation. A potential problem is thatlof the choice
of units for the dual state and ¢ filter computations. As reflected in
Table 5;2, very smé]] numerical values can be enCOuntered for the @ error
covariance matrix, S, and these must be compatible with the computational
capabilities of the particular computer to be employed. Further, making the
a priord S too large can result in estimates following the observation
residuals, thus at least delaying accurate convergence of the estimates.
Finally, the sequential 9 estimator suffers the disadvantages of requiring
up to 50% more computation time over that for just the state filter with a

priond constant @ values.
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In sum, we have shown that the thrust acéeleration errors which,
unchecked, produce extreme divergence of the staté estimates, can be very
adequately controlled. The techniques employed not only increase the

havigation accuracy, but also knowledge of the actual dynamic modeld.



Chapter 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary and Conclusions

This dissertation has been concerned with solving the fundamental
problém of dynamic modeling errors in classical Kalman filtering. The very
detrimental effects of such errors have been illustrated in both algebraic
and numerical terms through the examples of the rendezvous and SEP vehicle
estimation probiems. In approaching the model error problem, various aspects
and properties of the filtering elements have been presented, e.g., infor-
mation, observability, etc., thus providing a fundamental base for the
investigation. A number of non-adaptive algorithms have been presented
which attempt to account for errors in the dynamic model. These range from
the optimal approaches of employing a state noise covariance matrix and the
more complex Timited memory filter, to the suboptimal techniques of age-
weighting, additive gain term, and gain scaling modifications. In all cases,
these approaches compensate for the model error by simply keeping the gain
at a high enough value to prevent saturation, and thus allow continued filter
operation. There is, however, a certain minimum estimation accuracy obtainable,
reflected in part by the steady state value of the error covariance, and
determined by the corresponding filter parameters.

Except for the limited memory filter, adaptive forms of each of these
error compensation techniques have been presented. Using the adaptive state
noise covariance estimation algorithm due to Jazwinski, adaptive forms were

derived for each of the other methods.
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- The powerful technique of adaptively estimating modeling errors has
been presented, along with discussions of the assumed functional form or
mathematical structure of fhese errors. A unifying derivation has been
presented resulting in a relatively flexible structure suggested as a can-
didate function for use in model error compensation. Additionally, a new
algorithm for sequentially estimating state noise covariances has been
developed, based upon the ordinary Kalman filtering a]gorithm. In view of
the non-negative definite property of the state noise covariance, and certain
other assumptions, the algorithm produces constrained minimum variance
estimates.

In applying the techniques to the rendezvous and SEP estimation
problems, numerical results have offered some interesting conclusions. From
the rendezvous problem, the performance of the ordinary gain scaling algo-
rithm (b = constant) clearly indicates that this method is unacceptable to
counter the effect of unbounded model errors. This is true for both the
adaptive and non-adaptive forms. In their non-adaptive forms, the other
algorithms have been shown to produce equivalent steady state performance
when appropriate filter parameter values are employed. This is fufther
substantiated by the adaptive formulations for which the performances are
nearly the same. In fact, Jazwinski's state noise covariance estimation and
the adaptive age-weighting algorithms produce identical performance. Further,
the modified gain scaling and additive gain term methods in their adaptive
forms also yield identical performance. Between the two sets, the former
algorithms appear to offer slightly greater confidence in their estimates.
The reason for this is not clear. However, one clue is that the former has
filter parameters (@ and s) which can take on infinitely large values; the

latter algorithms have parameters (o and B) rénging between zero and one.
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In view of this, the conclusion suggested is that the differences may be due
to numerical sensitivities, a condition brought on by finite computer word
length. Thus, in the latter case, congiderably more significant figures

are required to achieve the same resp]ts as for @ and s.

Results obtained for the estimation of model errors, as applied to
the rendezvous problem, clearly indicate the superior performance of this
method. This is to be expected, since it is the only method which actually
attempts to improve knowledge of the dynamic model. Coupled with an appro-
priately determined state noise covariance matrix, this technique is thus
the best approach to the model error problem. For this reason, this approach
was taken for investigating the solar electric propulsion mission. The
accuracy of this approach in the SEP orbit determination study is démonstrated
by the performance for the various assumed model structures. In general,
higher order models are to be preferred since their structure tends to make
them more adaptabTe to complex, as well as simple, error forms. This is
substantiated by the more accurate estimation performance of the second order
models. In view of the structure of the SEP acceleration error. and the
rather remarkable performance of Model 2b, the importance of accurate but
parexic modeling cannot be under-emphasized.

The sequential estimator for the state noise covariance matrix can
be effective in maintaining operation of the Kalman filter, both with and
without the formulation for estimating mode! errors, atthough it is rather
demanding of computation time. For the rendezvous problem, the estimates
of the state noise covariance were found to be somewhat erratic, indicating
a rather acute sensitivity to the residuals. In the SEP mission simulation,
the strategy of avoiding @ filter operation during the state filter transient

periods proved to be the key to success in this application. Thus, performance
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in the rendezvous problem could probably be improved using this philosophy.
Further, in the rendezvous appiication, the T estimation utilized all a
postenioni & residuals, thus including the effects of transient state filter
Operation. For the SEP mission, the modification of the 7 estimator timiting
Tt to a batch of 20 residuals appeared to be a more viable approach. In this
configuration the ¢ filter operating in the state filter, post-transient
period was found to be quite effective in improving state noise covariance
values for Models 1b and 2b. The success obtained with this strateqy suggests

that the dual state-g filter algorithm can be a useful estimation tool.

6.2 Recommendations for Further Investigation

One of the most apparent questions which remains unanswered is that
of performance of the suboptimal adaptive and non-adaptive algorithms for the
case of vector state variables. Some reflection will reveal that the algo-
rithms could not be expected to be equivalenced in the same sense as for the
scalar case, viz., the rendezvous problem. For example, the age-weighting
algorithm simply multiplies the error covarfance by a scalar, thus scaling
each element by the same amount. The additive gain term, however, adds
different terms of varying value to the error covariance.

The additive gain term algorithm suffers a disadvantage in that the
added term,

3 R HL/H HY
affects the gain and error covariance only for those state elements which
appear explicitly in the observafion state relationship. As indicated in

section 2.2, the gain scaling modification using




produces the gain expression of (2.2.15) which differs from that for the
additive gain (2.3.2) by the presence of the error covariance, 7. As long
as P is of full rank, the former gain,

K=(PH +BRPH/BPHIHPH + )7 Gy
s altered for alf terms in the state vector, regardiess of their explicit
appearance or absence in the measurement equation. Thus the original additive
gain term cannot be successfully applied to, say, the model error estimation
algorithm; the modified gain (2.2.15) can. .In light of the fact that for the
scalar problem the P divides out, this aspect was not investigated in the
rendezvous problem. However, any vector problem (say, the rendezvous problem
where range, o, is included with range rate, o, to form a 2 vector) could be
used to investigate this aspect.

Similar conditions occur for Jazwinski's ¢ estimation algorithm, Here

the pseudo inverse,
§ AT o g7

A = =
AT mrrtET

usually suffers the same malady as the additive gain term. By employing a

different pseudo inverse, say,

= AT
of - 24T
AP A

state elements not in the measurement equation will still have corresponding
non-zero state noise covariance elements.

In this study, the common structure given by the function of equation
(5.4.6) has only been suggested for use in estimating model errors. It should
be particularly interesting to investigate the ability of this common structure

to adapt to different model error functions, both bounded and unbounded.
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Considerable study of the sequential state noise estimator remains
to be done, particularly with regard to sensitivity analyses. Some sensi-
tivities have been examined with regard to various a prichd values of S and
7. However, additional study is warranted.

Finally, we refterate that some of the algorithms may be combined to
obtain hybrid techniques. The approaches here are many. One possibility
is to apply the suggested modified gain scaling technique {section 2.2,
with the gain given by (2.2.15)) to the model error estimation technique.
This approach, while suboptimal, would require only the selection of the
filter parameter, 8, rather than three or more state noise covariance elements.
Further, the adaptive form for estimating g couid be empioyed, thereby making
the algorithm completely adaptive.. |

Our concern in this study has been to investigate concepts and
techniques for alleviating the dynamic model error problem in linear filtering.
Many approaches have been discussed and analyzed, and advantages and dis-
advantages presented. The ff]tering and estimation process -- even in its most
sophisticated forms -- can never be any better than the mathematical model
representing the dynamic process. In.the final analysis, then, there can be
no substitute for accurate mbde11ng, whether analytically determined or

adaptively estimated.



Appendix A
MATRIX INVERSION LEMMA (SCHUR IDENTITY)

Define the positive definite matrix, X, as

x=(aTBa+ o)t (4.1}
Taken the inverse and pre-multiply by X to get

r=xaTBA+xC (4.1
Post-multiply by C-I:

cl=xaTpactsx | Y
or

x=ct o xaTpact ‘ (2,4
Post-multiply (A.3) by A B to obtain the following. sequence: |

" s xaA"BactaTs £ x 4T B

it

x AT BractaTB + 1)

It

x 4T Bea ™t AT+ 57 B

Post-multiply by 5L

1At

It

1)

il

x af Bea ¢t 4T + BT

ar

x 4T B =1 AT ot 4T s a7 (4.5

1y

Substitute (4.4) into (4.5) and solve for x, thus obtaining an expression

equivalent to (4.1)

-1 T

x=0t ot T eq ot

T 5ty 407t (4.6)

225



Appendix B
A AND B MATRIX ELEMENTS

A Matrix: Partition the A matrix into sub-matrices as fo]]éws:

0 I 0
A= AZI 0 A23
0 0 A,

These elements are given as
[ = 3 x 3 identity matriz

Aoy = la..] ; i =4, 5, 6; =1, 2, 3

ij
Azg = [aij] 3 1 = 4_, 5,- 6_,' j = 7_, 8, 9
‘433 = [aij] .; 1”3 j = ?J 8: 9
where
' 2
auy = M [sx _1]+ Xy
|7]* Llr|? [p|?
— < 2
gy = —H— [T _L[I_AY e]
FIRN ETEN B TR A
dug = M 3Xz
[2]® L|r]? ]
-~ = 2
oy = b [EX_ +_1_.[I_ Y e]
[»|® Ll=1* 1 |p] lp|?
8 2 .
Qsy = U -2 S 1] _ Ay
[7]* Lir|? lp|?

[21* Llr[?
- [25]
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e, = Y I:szy:,

[21* L]

o2
g = 1 [SA _ I]

I L |»]?

dy7 = —Y/|p| s dasg = X/’PI R aij.= O for other i, ]
: 1
e 1s the estimated thrust acceleration error, and |p| = (X% + ¥?)7?
Model 1la: aij =0, 1,j=7, 8, 9
Model 1b: av7 = -6, azg = - , aij = 0 for other ©,]
Model 2a: a5 = 7, a5 = 0 for othev 1,7
Model 2b: a7 = 7, ag7=-B, dge =-2 , a,.=20 for other i,J

17

For Model 0, e = @ in Aa1, and do3 = A4y = 0.

B Matrix: The B matrix is defined in partitioned form as
I ¢ ¢
B=|0 M
a 0 7
where

x/pl  -¥/lpl 0
m=1v/lp| x/|p] o0
0 0 1

which is the transformation matrix from the orbital frame to the heliocentric

frame.



Appendix C

OBSERVATION - STATE RELATION PARTIAL DERIVATIVES (H MATRIX)

Range Rate Measurements, o:

¥ e L
Y, = [(Xi - X ;) - (Xi Xsi) {p/e)) /e,

B _ oy -
. (Xi Xsi) /p, 1=1, 2, 3

oy
X,
2

where X& and ki are the heliocentric position and velocity components of the
vehicle; and Xsi and Qéj are the heliocentric position and velocity components
of the tracking station. The derivatives with respect to the other state

elements (depending upon the approximating model) are zero.

Star-VYehicle-Earth Angle, &:

(X - X
§§_= s . - coa E.ﬁ__%__
5% X1

JO|R - »|? eink&), =1, 2, 3
, IR - PI €
1 =]

where the X, are the heliocentric position components of the Earth; the & s

are the navigation star unit vector heliocentric components; A, and r are
the Earth and vehicle heiiocentric position vectors. The rest of the partial

derivatives are zero.
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Appendix D
THE ERGODIC. PROCESS

In a process which is ergodic in the mean, theory predicts 68.27%
for norma]Ty distributed errors (46, 98). 1If the process is orgodic in the
mean, the time sample averages are representative of the ensemble sample
averages, that is averaging more and more values along the time axis results
in convergence to fhe ensemble mean. A necessary and sufficient condition
that a process, x(¢), 0 < ¢ <=, be ergodic in the mean is that it be wide-

sense or weakly stationary, and that

T
Lim %fg{[x(w “u?l dt=0
T-300 o

or in the discrete case,
o1 &

Lim 7 Z E{lx - n]%} =0

Mo =]
See, for example, (46, 166-167). The assumption of ergodicity in the mean for
the range rate error process, ;(t), is reasonable as long as the process is
staticnary and the time average converges to E{g} = (¢, a condition guaranteed
if the Timit equations above are fulfilled. In our investigation, this is not
strictly the case; however, for short time periods it is approximately true.
Further, for a given mean and covariance, the Gaussian distribution represents
the maximum uncertainty, entropy. (47, 613). Thus the comparison of the tipme

sample with theoretical normal (Gaussian) distribution limits is reasonable

as long as the ergodicity assumption is justifiable.
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